ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for biovitenskap, fiskeri og økonomi
  • Institutt for arktisk og marin biologi
  • Artikler, rapporter og annet (arktisk og marin biologi)
  • View Item
  •   Home
  • Fakultet for biovitenskap, fiskeri og økonomi
  • Institutt for arktisk og marin biologi
  • Artikler, rapporter og annet (arktisk og marin biologi)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Weakening of Cold Halocline Layer Exposes Sea Ice to Oceanic Heat in the Eastern Arctic Ocean

Permanent link
https://hdl.handle.net/10037/19601
DOI
https://doi.org/10.1175/JCLI-D-19-0976.1
Thumbnail
View/Open
article.pdf (3.968Mb)
Published version (PDF)
Date
2020-08-20
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Polyakov, Igor V.; Rippeth, Tom; Fer, Ilker; Alkire, Matthew B.; Carmack, Eddy; Ingvaldsen, Randi Brunvær; Ivanov, Vladimir V.; Janout, Markus; Lind, Sigrid; Padman, Laurie; Pnyushkov, Andrey V.; Rember, Robert
Abstract
A 15-yr duration record of mooring observations from the eastern (>70°E) Eurasian Basin (EB) of the Arctic Ocean is used to show and quantify the recently increased oceanic heat flux from intermediate-depth (~150–900 m) warm Atlantic Water (AW) to the surface mixed layer and sea ice. The upward release of AW heat is regulated by the stability of the overlying halocline, which we show has weakened substantially in recent years. Shoaling of the AW has also contributed, with observations in winter 2017–18 showing AW at only 80 m depth, just below the wintertime surface mixed layer, the shallowest in our mooring records. The weakening of the halocline for several months at this time implies that AW heat was linked to winter convection associated with brine rejection during sea ice formation. This resulted in a substantial increase of upward oceanic heat flux during the winter season, from an average of 3–4 W m−2 in 2007–08 to >10 W m−2 in 2016–18. This seasonal AW heat loss in the eastern EB is equivalent to a more than a twofold reduction of winter ice growth. These changes imply a positive feedback as reduced sea ice cover permits increased mixing, augmenting the summer-dominated ice-albedo feedback.
Publisher
American Meteorological Society
Citation
Polyakov IV, Rippeth T, Fer I, Alkire MB, Carmack E, Ingvaldsen R, Ivanov VV, Janout M, Lind SL, Padman L, Pnyushkov A, Rember R. (2020). Weakening of Cold Halocline Layer Exposes Sea Ice to Oceanic Heat in the Eastern Arctic Ocean. Journal of Climate, 33(18).
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (arktisk og marin biologi) [1632]
© American Meteorological Society. Used with permission.

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)