dc.contributor.author | Kondratiev, Yuri | |
dc.contributor.author | Piatnitski, Andrey | |
dc.contributor.author | Zhizhina, Elena | |
dc.date.accessioned | 2020-11-24T08:05:39Z | |
dc.date.available | 2020-11-24T08:05:39Z | |
dc.date.issued | 2020-09-11 | |
dc.description.abstract | The paper deals with the large time asymptotic of the fundamental solution for a time fractional evolution equation with a convolution type operator. In this equation we use a Caputo time derivative of order α ∈ (0, 1), and assume that the convolution kernel of the spatial operator is symmetric, integrable and shows a super-exponential decay at infinity. Under these assumptions we describe the point-wise asymptotic behavior of the fundamental solution in all space-time regions. | en_US |
dc.identifier.citation | Kondratiev, Y.; Piatnitski, A.; Zhizhina, E. (2020) Asymptotics of fundamental solutions for time fractional equations with convolution kernels. <i>Fractional Calculus and Applied Analysis, 23</i>, (4),1161-1187. http://dx.doi.org/10.1515/fca-2020-0059 | en_US |
dc.identifier.cristinID | FRIDAID 1844967 | |
dc.identifier.doi | 10.1515/fca-2020-0059 | |
dc.identifier.issn | 1311-0454 | |
dc.identifier.issn | 1314-2224 | |
dc.identifier.uri | https://hdl.handle.net/10037/19907 | |
dc.language.iso | eng | en_US |
dc.publisher | De Greyter | en_US |
dc.relation.journal | Fractional Calculus and Applied Analysis | |
dc.rights.accessRights | openAccess | en_US |
dc.rights.holder | Copyright 2020 Diogenes Co., Sofia | en_US |
dc.subject | VDP::Mathematics and natural science: 400::Mathematics: 410 | en_US |
dc.subject | VDP::Matematikk og Naturvitenskap: 400::Matematikk: 410 | en_US |
dc.title | Asymptotics of fundamental solutions for time fractional equations with convolution kernels | en_US |
dc.type.version | publishedVersion | en_US |
dc.type | Journal article | en_US |
dc.type | Peer reviewed | en_US |