Vis enkel innførsel

dc.contributor.authorKondratiev, Yuri
dc.contributor.authorPiatnitski, Andrey
dc.contributor.authorZhizhina, Elena
dc.date.accessioned2020-11-24T08:05:39Z
dc.date.available2020-11-24T08:05:39Z
dc.date.issued2020-09-11
dc.description.abstractThe paper deals with the large time asymptotic of the fundamental solution for a time fractional evolution equation with a convolution type operator. In this equation we use a Caputo time derivative of order α ∈ (0, 1), and assume that the convolution kernel of the spatial operator is symmetric, integrable and shows a super-exponential decay at infinity. Under these assumptions we describe the point-wise asymptotic behavior of the fundamental solution in all space-time regions.en_US
dc.identifier.citationKondratiev, Y.; Piatnitski, A.; Zhizhina, E. (2020) Asymptotics of fundamental solutions for time fractional equations with convolution kernels. <i>Fractional Calculus and Applied Analysis, 23</i>, (4),1161-1187. http://dx.doi.org/10.1515/fca-2020-0059en_US
dc.identifier.cristinIDFRIDAID 1844967
dc.identifier.doi10.1515/fca-2020-0059
dc.identifier.issn1311-0454
dc.identifier.issn1314-2224
dc.identifier.urihttps://hdl.handle.net/10037/19907
dc.language.isoengen_US
dc.publisherDe Greyteren_US
dc.relation.journalFractional Calculus and Applied Analysis
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2020 Diogenes Co., Sofiaen_US
dc.subjectVDP::Mathematics and natural science: 400::Mathematics: 410en_US
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Matematikk: 410en_US
dc.titleAsymptotics of fundamental solutions for time fractional equations with convolution kernelsen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel