dc.contributor.author | Wood, Shona Hiedi | |
dc.contributor.author | Hindle, Matthew | |
dc.contributor.author | Mizoro, Yasutaka | |
dc.contributor.author | Cheng, Y | |
dc.contributor.author | Saer, Ben | |
dc.contributor.author | Miedzinska, K | |
dc.contributor.author | Christian, Helen | |
dc.contributor.author | Begley, Nicola | |
dc.contributor.author | McNeilly, Judy | |
dc.contributor.author | McNeilly, Alan | |
dc.contributor.author | Meddle, Simone | |
dc.contributor.author | Burt, Dave | |
dc.contributor.author | Loudon, Andrew S.I. | |
dc.date.accessioned | 2020-12-30T09:24:54Z | |
dc.date.available | 2020-12-30T09:24:54Z | |
dc.date.issued | 2020-08-27 | |
dc.description.abstract | The annual photoperiod cycle provides the critical environmental cue synchronizing rhythms of life in seasonal habitats. In 1936, Bünning proposed a circadian-based coincidence timer for photoperiodic synchronization in plants. Formal studies support the universality of this so-called coincidence timer, but we lack understanding of the mechanisms involved. Here we show in mammals that long photoperiods induce the circadian transcription factor <i>BMAL2</i>, in the <i>pars tuberalis</i> of the pituitary, and triggers summer biology through the eyes absent/thyrotrophin (EYA3/TSH) pathway. Conversely, long-duration melatonin signals on short photoperiods induce circadian repressors including <i>DEC1</i>, suppressing BMAL2 and the EYA3/TSH pathway, triggering winter biology. These actions are associated with progressive genome-wide changes in chromatin state, elaborating the effect of the circadian coincidence timer. Hence, circadian clock-pituitary epigenetic pathway interactions form the basis of the mammalian coincidence timer mechanism. Our results constitute a blueprint for circadian-based seasonal timekeeping in vertebrates. | en_US |
dc.identifier.citation | Wood, Hindle, Mizoro, Cheng, Saer, Miedzinska, Christian, Begley, McNeilly, McNeilly, Meddle, Burt, Loudon. Circadian clock mechanism driving mammalian photoperiodism. Nature Communications. 2020 | en_US |
dc.identifier.cristinID | FRIDAID 1862732 | |
dc.identifier.doi | 10.1038/s41467-020-18061-z | |
dc.identifier.issn | 2041-1723 | |
dc.identifier.uri | https://hdl.handle.net/10037/20156 | |
dc.language.iso | eng | en_US |
dc.publisher | Springer | en_US |
dc.relation.journal | Nature Communications | |
dc.rights.accessRights | openAccess | en_US |
dc.rights.holder | Copyright 2020 The Author(s) | en_US |
dc.subject | VDP::Mathematics and natural science: 400::Zoology and botany: 480 | en_US |
dc.subject | VDP::Matematikk og Naturvitenskap: 400::Zoologiske og botaniske fag: 480 | en_US |
dc.title | Circadian clock mechanism driving mammalian photoperiodism | en_US |
dc.type.version | publishedVersion | en_US |
dc.type | Journal article | en_US |
dc.type | Tidsskriftartikkel | en_US |
dc.type | Peer reviewed | en_US |