Vis enkel innførsel

dc.contributor.authorCalderbank, David M. J.
dc.contributor.authorKruglikov, Boris
dc.date.accessioned2021-01-08T14:04:51Z
dc.date.available2021-01-08T14:04:51Z
dc.date.issued2020-11-25
dc.description.abstractWe prove that the existence of a dispersionless Lax pair with spectral parameter for a nondegenerate hyperbolic second order partial differential equation (PDE) is equivalent to the canonical conformal structure defined by the symbol being Einstein–Weyl on any solution in 3D, and self-dual on any solution in 4D. The first main ingredient in the proof is a characteristic property for dispersionless Lax pairs. The second is the projective behaviour of the Lax pair with respect to the spectral parameter. Both are established for nondegenerate determined systems of PDEs of any order. Thus our main result applies more generally to any such PDE system whose characteristic variety is a quadric hypersurface.en_US
dc.identifier.citationCalderbank, Kruglikov. Integrability via Geometry: Dispersionless Differential Equations in Three and Four Dimensions. Communications in Mathematical Physics. 2020en_US
dc.identifier.cristinIDFRIDAID 1858046
dc.identifier.doi10.1007/s00220-020-03913-y
dc.identifier.issn0010-3616
dc.identifier.issn1432-0916
dc.identifier.urihttps://hdl.handle.net/10037/20238
dc.language.isoengen_US
dc.publisherSpringeren_US
dc.relation.journalCommunications in Mathematical Physics
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2020 The Author(s)en_US
dc.subjectVDP::Mathematics and natural science: 400::Mathematics: 410en_US
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Matematikk: 410en_US
dc.titleIntegrability via Geometry: Dispersionless Differential Equations in Three and Four Dimensionsen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel