dc.contributor.author | Tveit, Alexander Tøsdal | |
dc.contributor.author | Schmider, Tilman | |
dc.contributor.author | Hestnes, Anne Grethe | |
dc.contributor.author | Lindgren, Matteus | |
dc.contributor.author | Didriksen, Alena | |
dc.contributor.author | Svenning, Mette Marianne | |
dc.date.accessioned | 2021-01-15T13:43:00Z | |
dc.date.available | 2021-01-15T13:43:00Z | |
dc.date.issued | 2021-01-12 | |
dc.description.abstract | The second largest sink for atmospheric methane (CH<sub>4</sub>) is atmospheric methane oxidizing-bacteria (atmMOB). How atmMOB are able to sustain life on the low CH<sub>4</sub> concentrations in air is unknown. Here, we show that during growth, with air as its only source for energy and carbon, the recently isolated atmospheric methane-oxidizer <i>Methylocapsa gorgona</i> MG08 (USCα) oxidizes three atmospheric energy sources: CH<sub>4</sub>, carbon monoxide (CO), and hydrogen (H<sub>2</sub>) to support growth. The cell-specific CH<sub>4</sub> oxidation rate of <i>M. gorgona</i> MG08 was estimated at ~0.7 × 10<sup>−18</sup> mol cell<sup>−1</sup> h<sup>−1</sup>, which, together with the oxidation of CO and H<sub>2</sub>, supplies 0.38 kJ Cmol<sup>−1</sup> h<sup>−1</sup> during growth in air. This is seven times lower than previously assumed necessary to support bacterial maintenance. We conclude that atmospheric methane-oxidation is supported by a metabolic flexibility that enables the simultaneous harvest of CH<sub>4</sub>, H<sub>2</sub> and CO from air, but the key characteristic of atmospheric CH<sub>4</sub> oxidizing bacteria might be very low energy requirements. | en_US |
dc.identifier.citation | Tveit, Schmider, Hestnes, Lindgren, Didriksen, Svenning. Simultaneous Oxidation of Atmospheric Methane, Carbon Monoxide and Hydrogen for Bacterial Growth. Microorganisms. 2021;9(153) | en_US |
dc.identifier.cristinID | FRIDAID 1869727 | |
dc.identifier.doi | 10.3390/microorganisms9010153 | |
dc.identifier.issn | 2076-2607 | |
dc.identifier.uri | https://hdl.handle.net/10037/20296 | |
dc.language.iso | eng | en_US |
dc.publisher | MDPI | en_US |
dc.relation.ispartof | Schmider, T. (2024). Life on Air: On the Physiological Basis of Atmospheric Methane Oxidizing Bacteria. (Doctoral thesis). <a href=https://hdl.handle.net/10037/33622>https://hdl.handle.net/10037/33622</a> | |
dc.relation.journal | Microorganisms | |
dc.relation.projectID | info:eu-repo/grantAgreement/RCN/FRIMEDBIO/251027/Norway/Time & Energy: Fundamental microbial mechanisms that control CH4 dynamics in a warming Arctic// | en_US |
dc.rights.accessRights | openAccess | en_US |
dc.rights.holder | Copyright 2021 The Author(s) | en_US |
dc.subject | VDP::Mathematics and natural science: 400::Zoology and botany: 480 | en_US |
dc.subject | VDP::Matematikk og Naturvitenskap: 400::Zoologiske og botaniske fag: 480 | en_US |
dc.title | Simultaneous Oxidation of Atmospheric Methane, Carbon Monoxide and Hydrogen for Bacterial Growth | en_US |
dc.type.version | publishedVersion | en_US |
dc.type | Journal article | en_US |
dc.type | Tidsskriftartikkel | en_US |
dc.type | Peer reviewed | en_US |