ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for informatikk
  • Artikler, rapporter og annet (informatikk)
  • Vis innførsel
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for informatikk
  • Artikler, rapporter og annet (informatikk)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

HyperKvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy

Permanent lenke
https://hdl.handle.net/10037/20442
DOI
https://doi.org/10.1038/s41597-020-00622-y
Thumbnail
Åpne
article.pdf (3.704Mb)
Publisert versjon (PDF)
Dato
2020-08-28
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Forfatter
Borgli, Hanna; Thambawita, Vajira; Smedsrud, Pia H; Hicks, Steven; Jha, Debesh; Eskeland, Sigrun Losada; Randel, Kristin Ranheim; Pogorelov, Konstantin; Lux, Mathias; Dang Nguyen, Duc Tien; Johansen, Dag; Griwodz, Carsten; Stensland, Håkon Kvale; Garcia-Ceja, Enrique; Schmidt, Peter T; Hammer, Hugo Lewi; Riegler, Michael; Halvorsen, Pål; de Lange, Thomas
Sammendrag
Artificial intelligence is currently a hot topic in medicine. However, medical data is often sparse and hard to obtain due to legal restrictions and lack of medical personnel for the cumbersome and tedious process to manually label training data. These constraints make it difficult to develop systems for automatic analysis, like detecting disease or other lesions. In this respect, this article presents HyperKvasir, the largest image and video dataset of the gastrointestinal tract available today. The data is collected during real gastro- and colonoscopy examinations at Bærum Hospital in Norway and partly labeled by experienced gastrointestinal endoscopists. The dataset contains 110,079 images and 374 videos, and represents anatomical landmarks as well as pathological and normal findings. The total number of images and video frames together is around 1 million. Initial experiments demonstrate the potential benefits of artificial intelligence-based computer-assisted diagnosis systems. The HyperKvasir dataset can play a valuable role in developing better algorithms and computer-assisted examination systems not only for gastro- and colonoscopy, but also for other fields in medicine.
Er en del av
Jha, D. (2022). Machine Learning-based Classification, Detection, and Segmentation of Medical Images. (Doctoral thesis). https://hdl.handle.net/10037/23693.
Forlag
Springer Nature
Sitering
Borgli H, Thambawita V, Smedsrud PH, Hicks S, Jha D, Eskeland SL, Randel KR, Pogorelov K, Lux M, Dang Nguyen DT, Johansen D, Griwodz C, Stensland H, Garcia-Ceja E, Schmidt PT, Hammer HL, Riegler M, Halvorsen P, de Lange. HyperKvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy. Scientific Data. 2020
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (informatikk) [477]
Copyright 2020 The Author(s)

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring