Vis enkel innførsel

dc.contributor.authorJadhav, Suyog
dc.contributor.authorAcuña Maldonado, Sebastian Andres
dc.contributor.authorOpstad, Ida Sundvor
dc.contributor.authorAhluwalia, Balpreet Singh
dc.contributor.authorAgarwal, Krishna
dc.contributor.authorPrasad, Dilip K.
dc.date.accessioned2021-01-25T22:04:02Z
dc.date.available2021-01-25T22:04:02Z
dc.date.issued2020-12-08
dc.description.abstractImage denoising or artefact removal using deep learning is possible in the availability of supervised training dataset acquired in real experiments or synthesized using known noise models. Neither of the conditions can be fulfilled for nanoscopy (super-resolution optical microscopy) images that are generated from microscopy videos through statistical analysis techniques. Due to several physical constraints, a supervised dataset cannot be measured. Further, the non-linear spatio-temporal mixing of data and valuable statistics of fluctuations from fluorescent molecules that compete with noise statistics. Therefore, noise or artefact models in nanoscopy images cannot be explicitly learned. Here, we propose a robust and versatile simulation-supervised training approach of deep learning auto-encoder architectures for the highly challenging nanoscopy images of sub-cellular structures inside biological samples. We show the proof of concept for one nanoscopy method and investigate the scope of generalizability across structures, and nanoscopy algorithms not included during simulation-supervised training. We also investigate a variety of loss functions and learning models and discuss the limitation of existing performance metrics for nanoscopy images. We generate valuable insights for this highly challenging and unsolved problem in nanoscopy, and set the foundation for the application of deep learning problems in nanoscopy for life sciences.en_US
dc.identifier.citationJadhav S, Acuña Maldonado SAA, Opstad IS, Ahluwalia BS, Agarwal K, Prasad DK. Artefact removal in ground truth deficient fluctuations-based nanoscopy images using deep learning. Biomedical Optics Express. 2020en_US
dc.identifier.cristinIDFRIDAID 1853616
dc.identifier.doihttps://doi.org/10.1364/BOE.410617
dc.identifier.issn2156-7085
dc.identifier.urihttps://hdl.handle.net/10037/20481
dc.language.isoengen_US
dc.publisherOptical Society of Americaen_US
dc.relation.journalBiomedical Optics Express
dc.relation.projectIDinfo:eu-repo/grantAgreement/RCN/NANO2021/288565/Norway/Integrated photonic chip-based nanoscopy for pathology & the clinic//en_US
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/804233/EU/Label-free 3D morphological nanoscopy for studying sub-cellular dynamics in live cancer cells with high spatio-temporal resolution/3D-nanoMorph/en_US
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2020 The Optical Society of Americaen_US
dc.subjectVDP::Mathematics and natural science: 400::Physics: 430::Electromagnetism, acoustics, optics: 434en_US
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Fysikk: 430::Elektromagnetisme, akustikk, optikk: 434en_US
dc.titleArtefact removal in ground truth deficient fluctuations-based nanoscopy images using deep learningen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel