Abelian equations and rank problems for planar webs
Permanent lenke
https://hdl.handle.net/10037/2049Dato
2006-05-04Type
Journal articleTidsskriftartikkel
Peer reviewed
Sammendrag
We find an invariant characterization of planar webs of maximum rank.
For 4-webs, we prove that a planar 4-web is of maximum rank three if and
only if it is linearizable and its curvature vanishes. This result leads to
the direct web-theoretical proof of the Poincar´e’s theorem: a planar 4-
web of maximum rank is linearizable. We also find an invariant intrinsic
characterization of planar 4-webs of rank two and one and prove that in
general such webs are not linearizable. This solves the Blaschke problem
“to find invariant conditions for a planar 4-web to be of rank 1 or 2 or 3”.
Finally, we find invariant characterization of planar 5-webs of maximum
rank and prove than in general such webs are not linearizable.
Beskrivelse
Dette er forfatternes aksepterte versjon.
Forlag
Allerton Press, Inc. distributed exclusively by Springer Science+Business Media LLCSitering
Russian Mathematics (Iz VUZ) DOI: 10.3103/S1066369X07100039Metadata
Vis full innførselSamlinger
Følgende lisensfil er knyttet til denne innførselen: