Show simple item record

dc.contributor.authorGoldberg, Vladislav V.
dc.contributor.authorLychagin, Valentin V.
dc.contributor.authorAkivis, Maks A.
dc.date.accessioned2009-08-27T12:55:22Z
dc.date.available2009-08-27T12:55:22Z
dc.date.issued2004-03-31
dc.description.abstractWe find d − 2 relative differential invariants for a d-web, d ≥ 4, on a two-dimensional manifold and prove that their vanishing is necessary and sufficient for a d-web to be linearizable. If one writes the above invariants in terms of web functions f(x, y) and g4(x, y), ..., gd(x, y), then necessary and sufficient conditions for the linearizabilty of a d-web are two PDEs of the fourth order with respect to f and g4, and d − 4 PDEs of the second order with respect to f and g4, ..., gd. For d = 4, this result confirms Blaschke’s conjecture on the nature of conditions for the linearizabilty of a 4-web. We also give Mathematica codes for testing 4- and d-webs (d > 4) for linearizability and examples of their usage.en
dc.descriptionDette er forfatternes aksepterte versjon.en
dc.format.extent205771 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.citationAkivis, M.A., Goldberg, V.V. & Lychagin, V.V. Linearizability of d-webs, d ≥ 4, on two-dimensional manifolds. Sel. math., New ser. 10, 431 (2005).en
dc.identifier.doi10.1007/s00029-004-0362-x
dc.identifier.issn1420-9020 (Online)
dc.identifier.urihttps://hdl.handle.net/10037/2056
dc.identifier.urnURN:NBN:no-uit_munin_1808
dc.language.isoengen
dc.publisherBirkhäuser Baselen
dc.rights.accessRightsopenAccess
dc.subjectVDP::Mathematics and natural science: 400::Mathematics: 410::Statistics: 412en
dc.subjectWeben
dc.subjectlinearizationen
dc.subjectdifferential invariantsen
dc.subjectnonlinear PDEen
dc.titleLinearizability of d-webs, d ≥ 4, on two-dimensional manifoldsen
dc.typeJournal articleen
dc.typeTidsskriftartikkelen
dc.typePeer revieweden


File(s) in this item

Thumbnail
Thumbnail

This item appears in the following collection(s)

Show simple item record