dc.contributor.author | Goldberg, Vladislav V. | |
dc.contributor.author | Lychagin, Valentin V. | |
dc.contributor.author | Akivis, Maks A. | |
dc.date.accessioned | 2009-08-27T12:55:22Z | |
dc.date.available | 2009-08-27T12:55:22Z | |
dc.date.issued | 2004-03-31 | |
dc.description.abstract | We find d − 2 relative differential invariants for a d-web, d ≥ 4, on a
two-dimensional manifold and prove that their vanishing is necessary and
sufficient for a d-web to be linearizable. If one writes the above invariants
in terms of web functions f(x, y) and g4(x, y), ..., gd(x, y), then necessary
and sufficient conditions for the linearizabilty of a d-web are two PDEs of
the fourth order with respect to f and g4, and d − 4 PDEs of the second
order with respect to f and g4, ..., gd. For d = 4, this result confirms
Blaschke’s conjecture on the nature of conditions for the linearizabilty
of a 4-web. We also give Mathematica codes for testing 4- and d-webs
(d > 4) for linearizability and examples of their usage. | en |
dc.description | Dette er forfatternes aksepterte versjon. | en |
dc.format.extent | 205771 bytes | |
dc.format.mimetype | application/pdf | |
dc.identifier.citation | Akivis, M.A., Goldberg, V.V. & Lychagin, V.V. Linearizability of d-webs, d ≥ 4, on two-dimensional manifolds. Sel. math., New ser. 10, 431 (2005). | en |
dc.identifier.doi | 10.1007/s00029-004-0362-x | |
dc.identifier.issn | 1420-9020 (Online) | |
dc.identifier.uri | https://hdl.handle.net/10037/2056 | |
dc.identifier.urn | URN:NBN:no-uit_munin_1808 | |
dc.language.iso | eng | en |
dc.publisher | Birkhäuser Basel | en |
dc.rights.accessRights | openAccess | |
dc.subject | VDP::Mathematics and natural science: 400::Mathematics: 410::Statistics: 412 | en |
dc.subject | Web | en |
dc.subject | linearization | en |
dc.subject | differential invariants | en |
dc.subject | nonlinear PDE | en |
dc.title | Linearizability of d-webs, d ≥ 4, on
two-dimensional manifolds | en |
dc.type | Journal article | en |
dc.type | Tidsskriftartikkel | en |
dc.type | Peer reviewed | en |