ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for kjemi
  • Artikler, rapporter og annet (kjemi)
  • View Item
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for kjemi
  • Artikler, rapporter og annet (kjemi)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Structure and mechanism of a phage-encoded SAM lyase revises catalytic function of enzyme family

Permanent link
https://hdl.handle.net/10037/20576
DOI
https://doi.org/10.7554/eLife.61818
Thumbnail
View/Open
article.pdf (4.119Mb)
Published version (PDF)
Date
2021-02-10
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Isaksen, Geir Villy; Guo, Xiaohu; Söderholm, Annika; Kanchugal P, Sandesh; Warsi, Omar; Eckhard, Ulrich; Silvia, Trigüis; Gogoll, Adolf; Jerlström-Hultqvist, Jon; Åqvist, Johan; Anderson, Dan I; Selmer, Maria
Abstract
The first S-adenosyl methionine (SAM) degrading enzyme (SAMase) was discovered in bacteriophage T3, as a counter-defense against the bacterial restriction-modification system, and annotated as a SAM hydrolase forming 5’ methyl-thioadenosine (MTA) and L-homoserine. From environmental phages, we recently discovered three SAMases with barely detectable sequence similarity to T3 SAMase and without homology to proteins of known structure. Here, we present the very first phage SAMase structures, in complex with a substrate analogue and the product MTA. The structure shows a trimer of alpha–beta sandwiches similar to the GlnB-like superfamily, with active sites formed at the trimer interfaces. Quantum-mechanical calculations, thin-layer chromatography, and nuclear magnetic resonance spectroscopy demonstrate that this family of enzymes are not hydrolases but lyases forming MTA and L-homoserine lactone in a unimolecular reaction mechanism. Sequence analysis and in vitro and in vivo mutagenesis support that T3 SAMase belongs to the same structural family and utilizes the same reaction mechanism.
Publisher
eLife Sciences Publications
Citation
Isaksen GVI, Guo, Söderholm, Kanchugal P, Warsi, Eckhard, Silvia, Gogoll A, Jerlström-Hultqvist J, Åqvist J, Anderson, Selmer. Structure and mechanism of a phage-encoded SAM lyase revises catalytic function of enzyme family. eLIFE. 2021
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (kjemi) [565]
Copyright 2021 The Author(s)

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)