ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for matematikk og statistikk
  • Artikler, rapporter og annet (matematikk og statistikk)
  • Vis innførsel
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for matematikk og statistikk
  • Artikler, rapporter og annet (matematikk og statistikk)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Hyperspectral imaging for the detection of glioblastoma tumor cells in H&E slides using convolution neural networks

Permanent lenke
https://hdl.handle.net/10037/20638
DOI
https://doi.org/10.3390/s20071911
Thumbnail
Åpne
article.pdf (7.254Mb)
Publisert versjon (PDF)
Dato
2020-03-30
Type
Journal article
Tidsskriftartikkel
Peer reviewed
Article has an altmetric score of 7
Forfatter
Ortega, S.; Halicek, M.; Fabelo, H.; Camacho, R.S.; Plaza, M.L.; Godtliebsen, Fred; Callico, G. M.; Fei, Baowei
Sammendrag
Hyperspectral imaging (HSI) technology has demonstrated potential to provide useful information about the chemical composition of tissue and its morphological features in a single image modality. Deep learning (DL) techniques have demonstrated the ability of automatic feature extraction from data for a successful classification. In this study, we exploit HSI and DL for the automatic differentiation of glioblastoma (GB) and non-tumor tissue on hematoxylin and eosin (H&E) stained histological slides of human brain tissue. GB detection is a challenging application, showing high heterogeneity in the cellular morphology across different patients. We employed an HSI microscope, with a spectral range from 400 to 1000 nm, to collect 517 HS cubes from 13 GB patients using 20× magnification. Using a convolutional neural network (CNN), we were able to automatically detect GB within the pathological slides, achieving average sensitivity and specificity values of 88% and 77%, respectively, representing an improvement of 7% and 8% respectively, as compared to the results obtained using RGB (red, green, and blue) images. This study demonstrates that the combination of hyperspectral microscopic imaging and deep learning is a promising tool for future computational pathologies.
Forlag
MDPI
Sitering
Ortega S, Halicek, Fabelo, Camacho R, Plaza, Godtliebsen F, Callico. Hyperspectral imaging for the detection of glioblastoma tumor cells in H&E slides using convolution neural networks . Sensors. 2020;20(7)
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (matematikk og statistikk) [353]
Copyright 2020 The Author(s)

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring

 
Posted by 9 X users
65 readers on Mendeley
See more details