Vis enkel innførsel

dc.contributor.authorOrtega, S.
dc.contributor.authorHalicek, M.
dc.contributor.authorFabelo, H.
dc.contributor.authorCamacho, R.S.
dc.contributor.authorPlaza, M.L.
dc.contributor.authorGodtliebsen, Fred
dc.contributor.authorCallico, G. M.
dc.contributor.authorFei, Baowei
dc.date.accessioned2021-03-04T07:24:13Z
dc.date.available2021-03-04T07:24:13Z
dc.date.issued2020-03-30
dc.description.abstractHyperspectral imaging (HSI) technology has demonstrated potential to provide useful information about the chemical composition of tissue and its morphological features in a single image modality. Deep learning (DL) techniques have demonstrated the ability of automatic feature extraction from data for a successful classification. In this study, we exploit HSI and DL for the automatic differentiation of glioblastoma (GB) and non-tumor tissue on hematoxylin and eosin (H&E) stained histological slides of human brain tissue. GB detection is a challenging application, showing high heterogeneity in the cellular morphology across different patients. We employed an HSI microscope, with a spectral range from 400 to 1000 nm, to collect 517 HS cubes from 13 GB patients using 20× magnification. Using a convolutional neural network (CNN), we were able to automatically detect GB within the pathological slides, achieving average sensitivity and specificity values of 88% and 77%, respectively, representing an improvement of 7% and 8% respectively, as compared to the results obtained using RGB (red, green, and blue) images. This study demonstrates that the combination of hyperspectral microscopic imaging and deep learning is a promising tool for future computational pathologies.en_US
dc.identifier.citationOrtega S, Halicek, Fabelo, Camacho R, Plaza, Godtliebsen F, Callico. Hyperspectral imaging for the detection of glioblastoma tumor cells in H&E slides using convolution neural networks . Sensors. 2020;20(7)en_US
dc.identifier.cristinIDFRIDAID 1861598
dc.identifier.doihttps://doi.org/10.3390/s20071911
dc.identifier.issn1424-8220
dc.identifier.urihttps://hdl.handle.net/10037/20638
dc.language.isoengen_US
dc.publisherMDPIen_US
dc.relation.journalSensors
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2020 The Author(s)en_US
dc.subjectVDP::Technology: 500en_US
dc.subjectVDP::Teknologi: 500en_US
dc.titleHyperspectral imaging for the detection of glioblastoma tumor cells in H&E slides using convolution neural networksen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel