ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • Vis innførsel
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

ELM-HTM guided bio-inspired unsupervised learning for anomalous trajectory classification

Permanent lenke
https://hdl.handle.net/10037/20705
DOI
https://doi.org/10.1016/j.cogsys.2020.04.003
Thumbnail
Åpne
article.pdf (1.966Mb)
Publisert versjon (PDF)
Dato
2020-05-23
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Forfatter
Sekh, Arif Ahmed; Dogra, Debi Prosad; Kar, Samarjit; Roy, Partha Pratim; Prasad, Dilip K.
Sammendrag
Artificial intelligent systems often model the solutions of typical machine learning problems, inspired by biological processes, because of the biological system is faster and much adaptive than deep learning. The utility of bio-inspired learning methods lie in its ability to discover unknown patterns, and its less dependence on mathematical modeling or exhaustive training. In this paper, we propose a new bio-inspired learning model for a single-class classifier to detect abnormality in video object trajectories. The method uses a simple but dynamic extreme learning machine (ELM) and hierarchical temporal memory (HTM) together referred to as ELM-HTM in an unsupervised way to learn and classify time series patterns. The method has been tested on trajectory sequences in traffic surveillance to find abnormal behaviors such as high-speed, unusual stops, driving in wrong directions, loitering, etc. Experiments have also been performed with 3D air signatures captured using sensors and used for biometric authentication(forged/genuine). The results indicate a significant gain over training time and classification accuracy. The proposed method outperforms in predicting long-time patterns by observing small steps with an average accuracy gain of 15% as compared to the state-of-the-art HTM. The method has applications in detecting abnormal activities in videos by learning the movement patterns as well as in biometric authentication.
Forlag
Elsevier
Sitering
Sekh, Dogra, Kar, Roy, Prasad. ELM-HTM guided bio-inspired unsupervised learning for anomalous trajectory classification. Cognitive Systems Research. 2020;63:30-41
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (fysikk og teknologi) [1057]
Copyright 2020 The Author(s)

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring