ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • View Item
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Lagrangian Snow Evolution System for Sea Ice Applications (SnowModel‐LG): Part II - Analyses

Permanent link
https://hdl.handle.net/10037/20932
DOI
https://doi.org/10.1029/2019JC015900
Thumbnail
View/Open
article.pdf (29.14Mb)
Published version (PDF)
Date
2020-09-02
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Stroeve, Julienne C.; Liston, Glen E.; Buzzard, Samantha; Zhou, Lu; Mallett, Robbie; Barrett, Andrew; Tschudi, Mark; Tsamados, Michel; Itkin, Polona; Stewart, Scott
Abstract
Sea ice thickness is a critical variable, both as a climate indicator and for forecasting sea ice conditions on seasonal and longer time scales. The lack of snow depth and density information is a major source of uncertainty in current thickness retrievals from laser and radar altimetry. In response to this data gap, a new Lagrangian snow evolution model (SnowModel‐LG) was developed to simulate snow depth, density, and grain size on a pan‐Arctic scale, daily from August 1980 through July 2018. In this study, we evaluate the results from this effort against various data sets, including those from Operation IceBridge, ice mass balance buoys, snow buoys, MagnaProbes, and rulers. We further compare modeled snow depths forced by two reanalysis products (Modern Era Retrospective‐Analysis for Research and Applications, Version 2 and European Centre for Medium‐Range Weather Forecasts Reanalysis, 5th Generation) with those from two historical climatologies, as well as estimates over first‐year and multiyear ice from satellite passive microwave observations. Our results highlight the ability of our SnowModel‐LG implementation to capture observed spatial and seasonal variability in Arctic snow depth and density, as well as the sensitivity to the choice of reanalysis system used to simulate snow depths. Since 1980, snow depth is found to decrease throughout most regions of the Arctic Ocean, with statistically significant trends during the cold season months in the marginal ice zones around the Arctic Ocean and slight positive trends north of Greenland and near the pole.
Publisher
Wiley
Citation
Stroeve, Liston, Buzzard, Zhou, Mallett, Barrett, Tschudi, Tsamados, Itkin, Stewart. A Lagrangian Snow‐Evolution System for Sea Ice Applications (SnowModel‐LG): Part II ‐ Analyses. Journal of Geophysical Research (JGR): Oceans. 2020
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (fysikk og teknologi) [1057]
Copyright 2020 The Author(s)

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)