Show simple item record

dc.contributor.authorLongley, William
dc.contributor.authorErickson, Philip J.
dc.contributor.authorVierinen, Juha
dc.contributor.authorOppenheim, Meers
dc.contributor.authorLind, Frank David
dc.contributor.authorDimant, Yakov
dc.date.accessioned2021-05-03T09:27:50Z
dc.date.available2021-05-03T09:27:50Z
dc.date.issued2020-05-04
dc.description.abstractThe Millstone Hill incoherent scatter (IS) radar is used to measure spectra close to perpendicular to the Earth's magnetic field, and the data are fit to three different forward models to estimate ionospheric temperatures. IS spectra measured close to perpendicular to the magnetic field are heavily influenced by Coulomb collisions, and the temperature estimates are sensitive to the collision operator used in the forward model. The standard theoretical model for IS radar spectra treats Coulomb collisions as a velocity independent Brownian motion process. This gives estimates of <i>T<sub>e</sub>/T</i><sub>i</sub>< 1 when fitting the measured spectra for aspect angles up to 3.6°, which is a physically unrealistic result. The numerical forward model from Milla and Kudeki (2011, https://doi.org/10.1109/TGRS.2010.2057253) incorporates single‐particle simulations of velocity‐dependent Coulomb collisions into a linear framework, and when applied to the Millstone data, it predicts the same <i>T<sub>e</sub>/T</i><sub>i</sub> ratios as the Brownian theory. The new approach is a nonlinear particle‐in‐cell (PIC) code that includes velocity‐dependent Coulomb collisions which produce significantly more collisional and nonlinear Landau damping of the measured ion‐acoustic wave than the other forward models. When applied to the radar data, the increased damping in the PIC simulations will result in more physically realistic estimates of <i>T<sub>e</sub>/T</i><sub>i</sub>. This new approach has the greatest impact for the largest measured ionospheric densities and the lowest radar frequencies. The new approach should enable IS radars to obtain accurate measurements of plasma temperatures at times and locations where they currently cannot.en_US
dc.descriptionPublished by AGU. Copyright (2020) American Geophysical Union. <p> Longley, W. J., Erickson, P. J., Vierinen, J., Oppenheim, M. M., Lind, F. D., Dimant, Y. S. (2020), Millstone Hill ISR Measurements of Small Aspect Angle Spectra, Journal of Geophysical Research: Space Physics, volume 125, issue 6. <a href=https://doi.org/10.1029/2019JA027708>https://doi.org/10.1029/2019JA027708</a>en_US
dc.identifier.citationLongley W, Erickson PJ, Vierinen J, Oppenheim M, Lind FD, dimant. Millstone Hill ISR Measurements of Small Aspect Angle Spectra. Journal of Geophysical Research (JGR): Space Physics. 2020en_US
dc.identifier.cristinIDFRIDAID 1873691
dc.identifier.doihttps://doi.org/10.1029/2019JA027708
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/10037/21121
dc.language.isoengen_US
dc.publisherWileyen_US
dc.relation.journalJournal of Geophysical Research (JGR): Space Physics
dc.rights.accessRightsopenAccessen_US
dc.rights.holder©2020. American Geophysical Union. All Rights Reserved.en_US
dc.subjectVDP::Mathematics and natural science: 400::Geosciences: 450en_US
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Geofag: 450en_US
dc.titleMillstone Hill ISR Measurements of Small Aspect Angle Spectraen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


File(s) in this item

Thumbnail

This item appears in the following collection(s)

Show simple item record