Vis enkel innførsel

dc.contributor.authorTrosten, Daniel Johansen
dc.contributor.authorJenssen, Robert
dc.contributor.authorKampffmeyer, Michael
dc.date.accessioned2021-06-16T09:16:59Z
dc.date.available2021-06-16T09:16:59Z
dc.date.issued2021-04-19
dc.description.abstractPreservation of local similarity structure is a key challenge in deep clustering. Many recent deep clustering methods therefore use autoencoders to help guide the model's neural network towards an embedding which is more reflective of the input space geometry. However, recent work has shown that autoencoder-based deep clustering models can suffer from objective function mismatch (OFM). In order to improve the preservation of local similarity structure, while simultaneously having a low OFM, we develop a new auxiliary objective function for deep clustering. Our Unsupervised Companion Objective (UCO) encourages a consistent clustering structure at intermediate layers in the network -- helping the network learn an embedding which is more reflective of the similarity structure in the input space. Since a clustering-based auxiliary objective has the same goal as the main clustering objective, it is less prone to introduce objective function mismatch between itself and the main objective. Our experiments show that attaching the UCO to a deep clustering model improves the performance of the model, and exhibits a lower OFM, compared to an analogous autoencoder-based model.en_US
dc.identifier.citationTrosten, Jenssen, Kampffmeyer. Reducing Objective Function Mismatch in Deep Clustering with the Unsupervised Companion Objective. Proceedings of the Northern Lights Deep Learning Workshop. 2021;2en_US
dc.identifier.cristinIDFRIDAID 1912892
dc.identifier.doi10.7557/18.5709
dc.identifier.issn2703-6928
dc.identifier.urihttps://hdl.handle.net/10037/21442
dc.language.isoengen_US
dc.publisherSeptentrio Academic Publishingen_US
dc.relation.journalProceedings of the Northern Lights Deep Learning Workshop
dc.relation.projectIDNorges forskningsråd: 303514en_US
dc.relation.projectIDinfo:eu-repo/grantAgreement/RCN/SFI/309439/Norway/Visual Intelligence//en_US
dc.relation.projectIDinfo:eu-repo/grantAgreement/RCN/IKTPLUSS-IKT/303514/Norway/Interpretable Deep Learning from Electronic Health Records under Learning Constraints//en_US
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2021 The Author(s)en_US
dc.subjectVDP::Mathematics and natural science: 400::Physics: 430en_US
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Fysikk: 430en_US
dc.titleReducing Objective Function Mismatch in Deep Clustering with the Unsupervised Companion Objectiveen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel