Vis enkel innførsel

dc.contributor.advisorJohansen, Thomas A. Haugland
dc.contributor.advisorMyhre, Jonas Nordhaug
dc.contributor.advisorGodtliebsen, Fred
dc.contributor.authorBerezowski, Jonathan
dc.date.accessioned2021-07-02T07:39:37Z
dc.date.available2021-07-02T07:39:37Z
dc.date.issued2021-06-03
dc.description.abstractTrans-dimensional Bayesian inference for multi-layer perceptron architectures of varying size by reversible jump Markov chain Monte Carlo is developed and examined for its theoretical and practical merits and considerations. The algorithm features the No-U-Turn Sampler and Hamiltonian Monte Carlo for within-dimension moves, and makes use of a delayed-rejection sampler while exploring a variety of across-dimension moves that propose neural network models with varying numbers of hidden layers and hidden nodes. The advantages and considerations of sampling from a joint posterior distribution over model architecture and parameters are examined, and posterior predictive distributions are developed for classification and regression tasks.en_US
dc.identifier.urihttps://hdl.handle.net/10037/21689
dc.language.isoengen_US
dc.publisherUiT Norges arktiske universiteten_US
dc.publisherUiT The Arctic University of Norwayen_US
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2021 The Author(s)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0en_US
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)en_US
dc.subject.courseIDSTA-3900
dc.subjectVDP::Mathematics and natural science: 400::Mathematics: 410::Statistics: 412en_US
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Matematikk: 410::Statistikk: 412en_US
dc.titleTrans-dimensional inference over Bayesian neural networksen_US
dc.typeMaster thesisen_US
dc.typeMastergradsoppgaveen_US


Tilhørende fil(er)

Thumbnail
Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
Med mindre det står noe annet, er denne innførselens lisens beskrevet som Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)