Show simple item record

dc.contributor.authorKhaleghian, Salman
dc.contributor.authorUllah, Habib
dc.contributor.authorKræmer, Thomas
dc.contributor.authorHughes, Nick
dc.contributor.authorEltoft, Torbjørn
dc.contributor.authorMarinoni, Andrea
dc.date.accessioned2021-07-05T08:08:09Z
dc.date.available2021-07-05T08:08:09Z
dc.date.issued2021-04-29
dc.description.abstractWe explore new and existing convolutional neural network (CNN) architectures for sea ice classification using Sentinel-1 (S1) synthetic aperture radar (SAR) data by investigating two key challenges: binary sea ice versus open-water classification, and a multi-class sea ice type classification. The analysis of sea ice in SAR images is challenging because of the thermal noise effects and ambiguities in the radar backscatter for certain conditions that include the reflection of complex information from sea ice surfaces. We use manually annotated SAR images containing various sea ice types to construct a dataset for our Deep Learning (DL) analysis. To avoid contamination between classes we use a combination of near-simultaneous SAR images from S1 and fine resolution cloud-free optical data from Sentinel-2 (S2). For the classification, we use data augmentation to adjust for the imbalance of sea ice type classes in the training data. The SAR images are divided into small patches which are processed one at a time. We demonstrate that the combination of data augmentation and training of a proposed modified Visual Geometric Group 16-layer (VGG-16) network, trained from scratch, significantly improves the classification performance, compared to the original VGG-16 model and an ad hoc CNN model. The experimental results show both qualitatively and quantitatively that our models produce accurate classification results.en_US
dc.identifier.citationKhaleghian S, Ullah H, Kræmer TK, Hughes N, Eltoft T, Marinoni A. Sea Ice Classification of SAR Imagery Based on Convolution Neural Networks. Remote Sensing. 2021;13(9)en_US
dc.identifier.cristinIDFRIDAID 1915006
dc.identifier.doi10.3390/rs13091734
dc.identifier.issn2072-4292
dc.identifier.urihttps://hdl.handle.net/10037/21716
dc.language.isoengen_US
dc.publisherMDPIen_US
dc.relation.ispartofKhaleghian, S. (2022). Scalable computing for earth observation - Application on Sea Ice analysis. (Doctoral thesis). <a href=https://hdl.handle.net/10037/27513>https://hdl.handle.net/10037/27513</a>.
dc.relation.journalRemote Sensing
dc.relation.projectIDNorges forskningsråd: 237906en_US
dc.relation.projectIDEC/H2020: 825258en_US
dc.relation.projectIDinfo:eu-repo/grantAgreement/RCN/SFI/237906/Norway/Centre for Integrated Remote Sensing and Forecasting for Arctic Operations/CIRFA/en_US
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/ExtremeEarth/285258/?/From Copernicus Big Data to Extreme Earth Analytics//en_US
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2021 The Author(s)en_US
dc.subjectVDP::Mathematics and natural science: 400::Physics: 430en_US
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Fysikk: 430en_US
dc.titleSea Ice Classification of SAR Imagery Based on Convolution Neural Networksen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


File(s) in this item

Thumbnail

This item appears in the following collection(s)

Show simple item record