ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for ingeniørvitenskap og teknologi
  • Institutt for industriell teknologi
  • Artikler, rapporter og annet (industriell teknologi)
  • View Item
  •   Home
  • Fakultet for ingeniørvitenskap og teknologi
  • Institutt for industriell teknologi
  • Artikler, rapporter og annet (industriell teknologi)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Aerodynamic forces on iced cylinder for dry ice accretion – A numerical study

Permanent link
https://hdl.handle.net/10037/22086
DOI
https://doi.org/10.1016/j.jweia.2020.104365
Thumbnail
View/Open
article.pdf (7.900Mb)
Published version (PDF)
Date
2020-09-28
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Sokolov, Pavlo; Virk, Muhammad Shakeel
Abstract
Within this paper the ISO 12494 assumption of standard of slowly rotating reference collector under ice accretion has been tested. This concept, introduced by (Makkonen, 1984), suggests that the power line cables, which are the basis of the “reference collector” in the ISO framework, are slowly rotating under ice load, due to limited torsional stiffness. For this purpose, several Computational Fluid Dynamics (CFD) simulations of the atmospheric ice accretion and transient airflow conditions over iced cylinder at different angles of attack were performed. In order to ascertain the similarity, several parameters were chosen, namely, drag, lift and moment coefficients, pressure and viscous force. The results suggest that the benchmark cases of rotating and uniced cylinder have “similar” aerodynamic loads when compared with the “averaged” results at different angles of attack (AoA), namely, the values of total pressure and viscous force. However, on individual and instantaneous basis the difference in the airflow regime between AoA cases and the benchmark cases can be noticeable. The results from the ice accretion simulation suggest that at long term the gravity force will be the dominating one, with rotating cylinder being a good approximation to the “averaged” angle of attack cases for the ice accretion.
Is part of
Sokolov, P. (2021). Study of the in-cloud dry ice accretion on cylinders for low values of the Stokes number. (Doctoral thesis). https://hdl.handle.net/10037/22088.
Publisher
Elsevier
Citation
Sokolov P, Virk MS. Aerodynamic forces on iced cylinder for dry ice accretion – A numerical study. Journal of Wind Engineering and Industrial Aerodynamics. 2020
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (industriell teknologi) [195]
Copyright 2020 The Author(s)

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)