Vis enkel innførsel

dc.contributor.authorChoi, Changkyu
dc.contributor.authorKampffmeyer, Michael
dc.contributor.authorHandegard, Nils Olav
dc.contributor.authorSalberg, Arnt Børre
dc.contributor.authorBrautaset, Olav
dc.contributor.authorEikvil, Line
dc.contributor.authorJenssen, Robert
dc.date.accessioned2021-10-05T06:50:50Z
dc.date.available2021-10-05T06:50:50Z
dc.date.issued2021-08-12
dc.description.abstractAcoustic target classification in multi-frequency echosounder data is a major interest for the marine ecosystem and fishery management since it can potentially estimate the abundance or biomass of the species. A key problem of current methods is the heavy dependence on the manual categorization of data samples. As a solution, we propose a novel semi-supervised deep learning method leveraging a few annotated data samples together with vast amounts of unannotated data samples, all in a single model. Specifically, two inter-connected objectives, namely, a clustering objective and a classification objective, optimize one shared convolutional neural network in an alternating manner. The clustering objective exploits the underlying structure of all data, both annotated and unannotated; the classification objective enforces a certain consistency to given classes using the few annotated data samples. We evaluate our classification method using echosounder data from the sandeel case study in the North Sea. In the semi-supervised setting with only a tenth of the training data annotated, our method achieves 67.6% accuracy, outperforming a conventional semi-supervised method by 7.0 percentage points. When applying the proposed method in a fully supervised setup, we achieve 74.7% accuracy, surpassing the standard supervised deep learning method by 4.7 percentage points.en_US
dc.identifier.citationChoi C, Kampffmeyer MC, Handegard NO, Salberg AB, Brautaset O, Eikvil L, Jenssen R. Semi-supervised target classification in multi-frequency echosounder data. ICES Journal of Marine Science. 2021en_US
dc.identifier.cristinIDFRIDAID 1927395
dc.identifier.doi10.1093/icesjms/fsab140
dc.identifier.issn1054-3139
dc.identifier.issn1095-9289
dc.identifier.urihttps://hdl.handle.net/10037/22715
dc.language.isoengen_US
dc.publisherOxford University Press (OUP)en_US
dc.relation.ispartofChoi, C. (2023). Advancing Deep Learning for Marine Environment Monitoring. (Doctoral thesis). <a href=https://hdl.handle.net/10037/29267>https://hdl.handle.net/10037/29267</a>.
dc.relation.journalICES Journal of Marine Science
dc.relation.projectIDNorges forskningsråd: 309512en_US
dc.relation.projectIDNorges forskningsråd: 270966en_US
dc.relation.projectIDinfo:eu-repo/grantAgreement/RCN/IKTPLUSS-IKT/270966/Norway/Ubiquitous cognitive computer vision for marine services/COGMAR/en_US
dc.relation.projectIDinfo:eu-repo/grantAgreement/RCN/SFI/309512/Norway/CRIMAC - Centre for research-based innovation in marine acoustic abundance estimation and backscatter classification/CRIMAC/en_US
dc.relation.urihttps://academic.oup.com/icesjms/advance-article/doi/10.1093/icesjms/fsab140/6348794
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2021 The Author(s)en_US
dc.subjectVDP::Mathematics and natural science: 400en_US
dc.subjectVDP::Matematikk og Naturvitenskap: 400en_US
dc.titleSemi-supervised target classification in multi-frequency echosounder dataen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel