Show simple item record

dc.contributor.advisorBremdal, Bernt Arild
dc.contributor.advisorJansson, Andreas Dyrøy
dc.contributor.authorDanielsen, Jostein René
dc.date.accessioned2021-12-13T11:06:16Z
dc.date.available2021-12-13T11:06:16Z
dc.date.issued2021-05-18
dc.description.abstractThis thesis will investigate different robotic manipulation and grasping approaches. It will present an overview of robotic simulation environments, and offer an evaluation of PyBullet, CoppeliaSim, and Gazebo, comparing various features. The thesis further presents a background for current approaches to robotic manipulation and grasping by describing how the robotic movement and grasping can be organized. State-of-the-Art approaches for learning robotic grasping, both using supervised methods and reinforcement learning methods are presented. Two set of experiments will be conducted in PyBullet, illustrating how Deep Reinforcement Learning methods could be applied to train a 7 degrees of freedom robotic arm to grasp objects.en_US
dc.identifier.urihttps://hdl.handle.net/10037/23361
dc.language.isoengen_US
dc.publisherUiT Norges arktiske universiteten_US
dc.publisherUiT The Arctic University of Norwayen_US
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2021 The Author(s)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0en_US
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)en_US
dc.subject.courseIDDTE-3900
dc.subjectVDP::Teknologi: 500::Informasjons- og kommunikasjonsteknologi: 550::Datateknologi: 551en_US
dc.subjectVDP::Teknologi: 500::Informasjons- og kommunikasjonsteknologi: 550::Datateknologi: 551en_US
dc.titleVision-based Robotic Grasping in Simulation using Deep Reinforcement Learningen_US
dc.typeMaster thesisen_US
dc.typeMastergradsoppgaveen_US


File(s) in this item

Thumbnail
Thumbnail

This item appears in the following collection(s)

Show simple item record

Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)