Vis enkel innførsel

dc.contributor.authorPécseli, Hans L
dc.contributor.authorTrulsen, Jan Karsten
dc.date.accessioned2021-12-28T10:23:42Z
dc.date.available2021-12-28T10:23:42Z
dc.date.issued2021-12-03
dc.description.abstractTaylor's hypothesis, or the frozen turbulence approximation, can be used to estimate also the specific energy dissipation rate ϵ by comparing experimental results with the Kolmogorov–Obukhov expression. The hypothesis assumes that a frequency detected by an instrument moving with a constant large velocity <i><b>V</i></b> can be related to a wavenumber by <i><b>ω=kV</i></b>. It is, however, not obvious how large the translational velocity has to be in order to make the hypothesis valid, or at least applicable with some acceptable uncertainty. Using the space–time-varying structure function for homogeneous and isotropic conditions, this question is addressed in the present study with emphasis on small velocities <i><b>V</i></b>. The structure function is obtained using results from numerical solutions of the Navier–Stokes equation. Particular attention is given to the <i><b>V</i></b> variation of the estimated specific energy dissipation, <i><b>ϵ<sub>est</sub></i></b>, compared with the actual value, <i><b>ϵ</i></b>, used in the numerical calculations. In contrast to previous studies, the results emphasize velocities <i><b>V</i></b> less than or comparable to the one-component root-mean-square velocity, <i><b>u<sub>rms</sub></i></b>. We find that <i><b>ϵ</i></b> can be determined to an acceptable accuracy for <i><b>V</i></b>≥<b>0.3</b><i><b>u<sub>rms</sub></i></b>. A simple analytical model is suggested to explain the main features of the observations, both Eulerian and Lagrangian. The model assumes that the observed time variations are solely due to eddies moving past the observer, thus ignoring eddy deformation and intermittency effects. In spite of these simplifications, the analysis accounts for most of the numerical results when also eddy-size-dependent velocities are accounted for.en_US
dc.identifier.citationPécseli H, Trulsen J. On the applicability of Taylor's hypothesis, including small sampling velocities. Journal of Fluid Mechanics. 2021;932en_US
dc.identifier.cristinIDFRIDAID 1966798
dc.identifier.doi10.1017/jfm.2021.969
dc.identifier.issn0022-1120
dc.identifier.issn1469-7645
dc.identifier.urihttps://hdl.handle.net/10037/23516
dc.language.isoengen_US
dc.publisherCambridge University Pressen_US
dc.relation.journalJournal of Fluid Mechanics
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2021 The Author(s)en_US
dc.subjectVDP::Mathematics and natural science: 400::Physics: 430en_US
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Fysikk: 430en_US
dc.titleOn the applicability of Taylor's hypothesis, including small sampling velocitiesen_US
dc.type.versionacceptedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel