Vis enkel innførsel

dc.contributor.authorStorås, Andrea Marheim
dc.contributor.authorStrumke, Inga
dc.contributor.authorRiegler, Michael Alexander
dc.contributor.authorGrauslund, Jakob
dc.contributor.authorHammer, Hugo Lewi
dc.contributor.authorYazidi, Anis
dc.contributor.authorHalvorsen, Pål
dc.contributor.authorGundersen, Kjell Gunnar
dc.contributor.authorUtheim, Tor Paaske
dc.contributor.authorJackson, Catherine Joan
dc.date.accessioned2021-12-29T13:25:59Z
dc.date.available2021-12-29T13:25:59Z
dc.date.issued2021-11-27
dc.description.abstractDry eye disease (DED) has a prevalence of between 5 and 50%, depending on the diagnostic criteria used and population under study. However, it remains one of the most underdiagnosed and undertreated conditions in ophthalmology. Many tests used in the diagnosis of DED rely on an experienced observer for image interpretation, which may be considered subjective and result in variation in diagnosis. Since artificial intelligence (AI) systems are capable of advanced problem solving, use of such techniques could lead to more objective diagnosis. Although the term ‘AI’ is commonly used, recent success in its applications to medicine is mainly due to advancements in the sub-field of machine learning, which has been used to automatically classify images and predict medical outcomes. Powerful machine learning techniques have been harnessed to understand nuances in patient data and medical images, aiming for consistent diagnosis and stratification of disease severity. This is the first literature review on the use of AI in DED. We provide a brief introduction to AI, report its current use in DED research and its potential for application in the clinic. Our review found that AI has been employed in a wide range of DED clinical tests and research applications, primarily for interpretation of interferometry, slit-lamp and meibography images. While initial results are promising, much work is still needed on model development, clinical testing and standardisation.en_US
dc.identifier.citationStorås, Strumke, Riegler, Grauslund, Hammer, Yazidi, Halvorsen, Gundersen, Utheim, Jackson. Artificial intelligence in dry eye disease. The ocular surface. 2022;23:74-86en_US
dc.identifier.cristinIDFRIDAID 1963107
dc.identifier.doi10.1016/j.jtos.2021.11.004
dc.identifier.issn1542-0124
dc.identifier.issn1937-5913
dc.identifier.urihttps://hdl.handle.net/10037/23549
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.relation.journalThe ocular surface
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2022 The Author(s)en_US
dc.subjectVDP::Medical disciplines: 700::Basic medical, dental and veterinary science disciplines: 710en_US
dc.subjectVDP::Medisinske Fag: 700::Basale medisinske, odontologiske og veterinærmedisinske fag: 710en_US
dc.titleArtificial intelligence in dry eye diseaseen_US
dc.type.versionsubmittedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel