Vis enkel innførsel

dc.contributor.authorHansen, Truls Lynne
dc.contributor.authorKellerman, A. C.
dc.contributor.authorMakarevich, R. A.
dc.contributor.authorHonary, F.
dc.date.accessioned2010-02-11T13:11:41Z
dc.date.available2010-02-11T13:11:41Z
dc.date.issued2009-02-02
dc.description.abstractIn this study, the relationship between auroral absorption, electrojet currents, and ionospheric plasma convection velocity is investigated using a series of new methods where temporal correlations are calculated and analysed for different events and MLT sectors. We employ cosmic noise absorption (CNA) observations obtained by the Imaging Riometer for Ionospheric Studies (IRIS) system in Kilpisj¨arvi, Finland, plasma convection measurements by the European Incoherent Scatter (EISCAT) radar, and estimates of the electrojet currents derived from the Tromsø magnetometer data. The IRIS absorption and EISCAT plasma convection measurements are used as a proxy for the particle precipitation component of the Hall conductance and ionospheric electric field, respectively. It is shown that the electrojet currents are affected by both enhanced conductance and electric field but with the relative importance of these two factors varying with magnetic local time (MLT). The correlation between the current and electric field (absorption) is the highest at 12:00– 15:00MLT (00:00–03:00MLT). It is demonstrated that the electric-field-dominant region is asymmetric with respect to magnetic-noon-midnight meridian extending from 09:00 to 21:00MLT. This may be related to the recently reported absence of mirror-symmetry between the effects of positive and negative IMF By on the high-latitude plasma convection pattern. The conductivity-dominant region is somewhat wider than previously thought extending from 21:00 to 09:00MLT with correlation slowly declining from midnight towards the morning, which is interpreted as being in part due to highenergy electron clouds gradually depleting and drifting from midnight towards the morning sector. The conductivitydominant region is further investigated using the extensiveIRIS riometer and Tromsø magnetometer datasets with results showing a distinct seasonal dependence. The region of high current-absorption correlation extends from 21:00 to 06:00MLT near both equinoxes, however, it is narrower and rotated towards the morning (02:00–07:00MLT) in summer, while in winter the correlation shows much greater variability with MLT. During periods of high current-electricfield correlation, the relationship between electric field and absorption can be described as an inverse proportionality, which can be explained by limitation of the electrojet current by the magnetospheric generator. Possible cases of electron heating absorption are also investigated with absorption showing no obvious dependence on the ion velocity or electron temperature.en
dc.descriptionThis is the publisher’s version/PDF (Published in Annales Geophysicae, an open access journal of the European Geosciences Union)en
dc.format.extent6676316 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.citationAnnales Geophysicae, 27, 473–486, 2009en
dc.identifier.issn0992-7689
dc.identifier.urihttps://hdl.handle.net/10037/2386
dc.identifier.urnURN:NBN:no-uit_munin_2136
dc.language.isoengen
dc.publisherCopernicus Publications on behalf of the European Geosciences Unionen
dc.rights.accessRightsopenAccess
dc.subjectVDP::Mathematics and natural science: 400::Physics: 430::Space and plasma physics: 437en
dc.subjectIonosphereen
dc.subjectAuroral ionosphereen
dc.subjectElectric fields and currentsen
dc.subjectParticle precipitationen
dc.subjectVDP::Mathematics and natural science: 400::Physics: 430::Electromagnetism, acoustics, optics: 434en
dc.titleOn the relationship between auroral absorption, electrojet currents and plasma convectionen
dc.typeJournal articleen
dc.typeTidsskriftartikkelen
dc.typePeer revieweden


Tilhørende fil(er)

Thumbnail
Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel