ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for informatikk
  • Artikler, rapporter og annet (informatikk)
  • Vis innførsel
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for informatikk
  • Artikler, rapporter og annet (informatikk)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

MSRF-Net: A Multi-Scale Residual Fusion Network for Biomedical Image Segmentation

Permanent lenke
https://hdl.handle.net/10037/24072
DOI
https://doi.org/10.1109/JBHI.2021.3138024
Thumbnail
Åpne
article.pdf (22.05Mb)
Publisert versjon (PDF)
Dato
2021-12-23
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Forfatter
Srivastava, Abhishek; Jha, Debesh; Chanda, Sukalpa; Pal, Umapada; Johansen, Håvard D.; Johansen, Dag; Riegler, Michael; Ali, Sharib; Halvorsen, Pål
Sammendrag
Methods based on convolutional neural networks have improved the performance of biomedical image segmentation. However, most of these methods cannot efficiently segment objects of variable sizes and train on small and biased datasets, which are common for biomedical use cases. While methods exist that incorporate multi-scale fusion approaches to address the challenges arising with variable sizes, they usually use complex models that are more suitable for general semantic segmentation problems. In this paper, we propose a novel architecture called MultiScale Residual Fusion Network (MSRF-Net), which is specially designed for medical image segmentation. The proposed MSRF-Net is able to exchange multi-scale features of varying receptive fields using a Dual-Scale Dense Fusion (DSDF) block. Our DSDF block can exchange information rigorously across two different resolution scales, and our MSRF sub-network uses multiple DSDF blocks in sequence to perform multi-scale fusion. This allows the preservation of resolution, improved information flow and propagation of both high- and low-level features to obtain accurate segmentation maps. The proposed MSRF-Net allows to capture object variabilities and provides improved results on different biomedical datasets. Extensive experiments on MSRF-Net demonstrate that the proposed method outperforms the cutting-edge medical image segmentation methods on four publicly available datasets. We achieve the Dice Coefficient (DSC) of 0.9217, 0.9420, and 0.9224, 0.8824 on Kvasir-SEG, CVC-ClinicDB, 2018 Data Science Bowl dataset, and ISIC-2018 skin lesion segmentation challenge dataset respectively. We further conducted generalizability tests and achieved DSC of 0.7921 and 0.7575 on CVCClinicDB and Kvasir-SEG, respectively.
Forlag
Institute of Electrical and Electronics Engineers
Sitering
Srivastava A, Jha D, Chanda S, Pal U, Johansen HJ, Johansen D, Riegler M, Ali S, Halvorsen P. MSRF-Net: A Multi-Scale Residual Fusion Network for Biomedical Image Segmentation. IEEE journal of biomedical and health informatics. 2021
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (informatikk) [477]
Copyright 2021 The Author(s)

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring