ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for matematikk og statistikk
  • Artikler, rapporter og annet (matematikk og statistikk)
  • Vis innførsel
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for matematikk og statistikk
  • Artikler, rapporter og annet (matematikk og statistikk)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Finite-sample properties of estimators for first and second order autoregressive processes

Permanent lenke
https://hdl.handle.net/10037/24088
DOI
https://doi.org/10.1007/s11203-021-09262-4
Thumbnail
Åpne
article.pdf (1.406Mb)
Publisert versjon (PDF)
Dato
2021-12-05
Type
Journal article
Tidsskriftartikkel
Peer reviewed
Forfatter
Sørbye, Sigrunn Holbek; Nicolau, Pedro Guilherme; Rue, Håvard
Sammendrag
The class of autoregressive (AR) processes is extensively used to model temporal dependence in observed time series. Such models are easily available and routinely fitted using freely available statistical software like R. A potential problem is that commonly applied estimators for the coefficients of AR processes are severely biased when the time series are short. This paper studies the finite-sample properties of well-known estimators for the coefficients of stationary AR(1) and AR(2) processes and provides bias-corrected versions of these estimators which are quick and easy to apply. The new estimators are constructed by modeling the relationship between the true and originally estimated AR coefficients using weighted orthogonal polynomial regression, taking the sampling distribution of the original estimators into account. The finite-sample distributions of the new bias-corrected estimators are approximated using transformations of skew-normal densities, combined with a Gaussian copula approximation in the AR(2) case. The properties of the new estimators are demonstrated by simulations and in the analysis of a real ecological data set. The estimators are easily available in our accompanying R-package for AR(1) and AR(2) processes of length 10–50, both giving bias-corrected coefficient estimates and corresponding confidence intervals.
Forlag
Springer
Sitering
Sørbye SH, Nicolau PG, Rue H. Finite-sample properties of estimators for first and second order autoregressive processes. Statistical Inference for Stochastic Processes : An International Journal devoted to Time Series Analysis and the Statistics of Continuous Time Processes and Dynamical Systems. 2021
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (matematikk og statistikk) [353]
Copyright 2021 The Author(s)

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring