ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • Vis innførsel
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Physics-based machine learning for subcellular segmentation in living cells

Permanent lenke
https://hdl.handle.net/10037/24124
DOI
https://doi.org/10.1038/s42256-021-00420-0
Thumbnail
Åpne
article.pdf (3.202Mb)
Publisert versjon (PDF)
Dato
2021-12-15
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Forfatter
Sekh, Arif Ahmed; Opstad, Ida Sundvor; Godtliebsen, Gustav; Birgisdottir, Åsa Birna; Ahluwalia, Balpreet Singh; Agarwal, Krishna; Prasad, Dilip K.
Sammendrag
Segmenting subcellular structures in living cells from fluorescence microscope images is a ground truth (GT)-deficient problem. The microscopes’ three-dimensional blurring function, finite optical resolution due to light diffraction, finite pixel resolution and the complex morphological manifestations of the structures all contribute to GT-hardness. Unsupervised segmentation approaches are quite inaccurate. Therefore, manual segmentation relying on heuristics and experience remains the preferred approach. However, this process is tedious, given the countless structures present inside a single cell, and generating analytics across a large population of cells or performing advanced artificial intelligence tasks such as tracking are greatly limited. Here we bring modelling and deep learning to a nexus for solving this GT-hard problem, improving both the accuracy and speed of subcellular segmentation. We introduce a simulation-supervision approach empowered by physics-based GT, which presents two advantages. First, the physics-based GT resolves the GT-hardness. Second, computational modelling of all the relevant physical aspects assists the deep learning models in learning to compensate, to a great extent, for the limitations of physics and the instrument. We show extensive results on the segmentation of small vesicles and mitochondria in diverse and independent living- and fixed-cell datasets. We demonstrate the adaptability of the approach across diverse microscopes through transfer learning, and illustrate biologically relevant applications of automated analytics and motion analysis.
Forlag
Nature
Sitering
Sekh AA, Opstad IS, Godtliebsen G, Birgisdottir Åb, Ahluwalia BS, Agarwal K, Prasad DK. Physics-based machine learning for subcellular segmentation in living cells. Nature Machine Intelligence. 2021:1-12
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (fysikk og teknologi) [1062]
Copyright 2021 The Author(s)

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring