dc.contributor.author | Berndt, Bruce C. | |
dc.contributor.author | Rebák, Örs | |
dc.date.accessioned | 2022-02-24T10:22:22Z | |
dc.date.available | 2022-02-24T10:22:22Z | |
dc.date.issued | 2022-01-09 | |
dc.description.abstract | This paper provides a survey of particular values of Ramanujan's theta function φ(q) = ∑ q^(n^2), n = −∞ ... ∞, when q = e^(−π√n), where n is a positive rational number. First, descriptions of the tools used to evaluate theta functions are given. Second, classical values are briefly discussed. Third, certain values due to Ramanujan and later authors are given. Fourth, the methods that are used to determine these values are described. Lastly, an incomplete evaluation found in Ramanujan's lost notebook, but now completed and proved, is discussed with a sketch of its proof. | en_US |
dc.identifier.citation | Berndt, Rebák. Explicit values for Ramanujan's theta function φ(q). Hardy-Ramanujan Journal. 2021;44(1):41-50 | en_US |
dc.identifier.cristinID | FRIDAID 2004699 | |
dc.identifier.doi | 10.46298/hrj.2022.8923 | |
dc.identifier.issn | 2804-7370 | |
dc.identifier.uri | https://hdl.handle.net/10037/24129 | |
dc.language.iso | eng | en_US |
dc.publisher | Episciences | en_US |
dc.relation.journal | Hardy-Ramanujan Journal | |
dc.rights.accessRights | openAccess | en_US |
dc.rights.holder | Copyright 2021 The Author(s) | en_US |
dc.subject | VDP::Matematikk og naturvitenskap: 400::Matematikk: 410 | en_US |
dc.subject | VDP::Mathematics and natural scienses: 400::Mathematics: 410 | en_US |
dc.subject | Matematikkhistorie / History of Mathematics | en_US |
dc.subject | Spørreundersøkelse / Survey | en_US |
dc.subject | Talllteori / Number theory | en_US |
dc.title | Explicit values for Ramanujan's theta function φ(q) | en_US |
dc.type.version | publishedVersion | en_US |
dc.type | Journal article | en_US |
dc.type | Tidsskriftartikkel | en_US |
dc.type | Peer reviewed | en_US |