ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for matematikk og statistikk
  • Artikler, rapporter og annet (matematikk og statistikk)
  • View Item
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for matematikk og statistikk
  • Artikler, rapporter og annet (matematikk og statistikk)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Coloring the Voronoi tessellation of lattices

Permanent link
https://hdl.handle.net/10037/24130
DOI
https://doi.org/10.1112/jlms.12456
Thumbnail
View/Open
article.pdf (607.1Kb)
Published version (PDF)
Date
2021-05-03
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Dutour Sikirić, Mathieu; Madore, David A.; Moustrou, Philippe; Vallentin, Frank
Abstract
In this paper we define the chromatic number of a lattice: It is the least number of colors one needs to color the interiors of the cells of the Voronoi tessellation of a lattice so that no two cells sharing a facet are of the same color. We compute the chromatic number of the root lattices, their duals, and of the Leech lattice, we consider the chromatic number of lattices of Voronoi’s first kind, and we investigate the asymptotic behavior of the chromatic number of lattices when the dimension tends to infinity. We introduce a spectral lower bound for the chromatic number of lattices in spirit of Hoffman’s bound for finite graphs. We compute this bound for the root lattices and relate it to the character theory of the corresponding Lie groups.
Publisher
Wiley
Citation
Dutour Sikirić, Madore, Moustrou, Vallentin. Coloring the Voronoi tessellation of lattices. Journal of the London Mathematical Society. 2021;104(3):1135-1171
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (matematikk og statistikk) [357]
Copyright 2021 The Author(s)

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)