ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • View Item
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Numerical Solution of the Parametric Diffusion Equation by Deep Neural Networks

Permanent link
https://hdl.handle.net/10037/24272
DOI
https://doi.org/10.1007/s10915-021-01532-w
Thumbnail
View/Open
article.pdf (2.685Mb)
Published version (PDF)
Date
2021-06-05
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Geist, Moritz; Petersen, Philipp; Raslan, Mones; Schneider, Reinhold; Kutyniok, Gitta Astrid Hildegard
Abstract
We perform a comprehensive numerical study of the effect of approximation-theoretical results for neural networks on practical learning problems in the context of numerical analysis. As the underlying model, we study the machine-learning-based solution of parametric partial differential equations. Here, approximation theory for fully-connected neural networks predicts that the performance of the model should depend only very mildly on the dimension of the parameter space and is determined by the intrinsic dimension of the solution manifold of the parametric partial differential equation. We use various methods to establish comparability between test-cases by minimizing the effect of the choice of test-cases on the optimization and sampling aspects of the learning problem. We find strong support for the hypothesis that approximation-theoretical effects heavily influence the practical behavior of learning problems in numerical analysis. Turning to practically more successful and modern architectures, at the end of this study we derive improved error bounds by focusing on convolutional neural networks.
Publisher
Springer
Citation
Geist, Petersen, Raslan, Schneider, Kutyniok. Numerical Solution of the Parametric Diffusion Equation by Deep Neural Networks. Journal of Scientific Computing. 2021;88(1)
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (fysikk og teknologi) [1057]
Copyright 2021 The Author(s)

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)