ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • Vis innførsel
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

ExtremeEarth meets satellite data from space

Permanent lenke
https://hdl.handle.net/10037/24314
DOI
https://doi.org/10.1109/JSTARS.2021.3107982
Thumbnail
Åpne
article.pdf (6.607Mb)
Publisert versjon (PDF)
Dato
2021-08-26
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Forfatter
Hagos, Desta Haileselassie; Kakantousis, Theofilos; Vlassov, Vladimir; Sheikholeslami, Sina; Wang, Tianze; Dowling, Jim; Paris, Claudia; Marinelli, Daniele; Weikmann, Giulio; Bruzzone, Lorenzo; Khaleghian, Salman; Kræmer, Thomas; Eltoft, Torbjørn; Marinoni, Andrea; Pantazi, Despina-Athanasia; Stamoulis, George; Bilidas, Dimitris; Papadakis, George; Mandilaras, George; Koubarakis, Manolis; Troumpoukis, Antonis; Konstantopoulos, Stasinos; Muerth, Markus; Appel, Florian; Fleming, Andrew; Cziferszky, Andreas
Sammendrag
Bringing together a number of cutting-edge technologies that range from storing extremely large volumes of data all the way to developing scalable machine learning and deep learning algorithms in a distributed manner and having them operate over the same infrastructure poses unprecedented challenges. One of these challenges is the integration of European Space Agency (ESA)’s Thematic Exploitation Platforms (TEPs) and data information access service platforms with a data platform, namely Hopsworks, which enables scalable data processing, machine learning, and deep learning on Copernicus data, and development of very large training datasets for deep learning architectures targeting the classification of Sentinel images. In this article, we present the software architecture of ExtremeEarth that aims at the development of scalable deep learning and geospatial analytics techniques for processing and analyzing petabytes of Copernicus data. The ExtremeEarth software infrastructure seamlessly integrates existing and novel software platforms and tools for storing, accessing, processing, analyzing, and visualizing large amounts of Copernicus data. New techniques in the areas of remote sensing and artificial intelligence with an emphasis on deep learning are developed. These techniques and corresponding software presented in this article are to be integrated with and used in two ESA TEPs, namely Polar and Food Security TEPs. Furthermore, we present the integration of Hopsworks with the Polar and Food Security use cases and the flow of events for the products offered through the TEPs.
Forlag
IEEE
Sitering
Hagos, Kakantousis, Vlassov, Sheikholeslami, Wang, Dowling, Paris, Marinelli, Weikmann, Bruzzone, Khaleghian, Kræmer, Eltoft, Marinoni, Pantazi, Stamoulis, Bilidas, Papadakis, Mandilaras, Koubarakis, Troumpoukis, Konstantopoulos, Muerth, Appel, Fleming, Cziferszky. ExtremeEarth meets satellite data from space. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2021;14:9038-9063
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (fysikk og teknologi) [1057]
Copyright 2021 The Author(s)

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring