ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • View Item
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Reconsidering Representation Alignment for Multi-View Clustering

Permanent link
https://hdl.handle.net/10037/24371
DOI
https://doi.org/10.1109/CVPR46437.2021.00131
Thumbnail
View/Open
article.pdf (9.901Mb)
Accepted manuscript version (PDF)
Date
2021-11-13
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Trosten, Daniel Johansen; Løkse, Sigurd Eivindson; Jenssen, Robert; Kampffmeyer, Michael
Abstract
Aligning distributions of view representations is a core component of today’s state of the art models for deep multi-view clustering. However, we identify several drawbacks with naïvely aligning representation distributions. We demonstrate that these drawbacks both lead to less separable clusters in the representation space, and inhibit the model’s ability to prioritize views. Based on these observations, we develop a simple baseline model for deep multi-view clustering. Our baseline model avoids representation alignment altogether, while performing similar to, or better than, the current state of the art. We also expand our baseline model by adding a contrastive learning component. This introduces a selective alignment procedure that preserves the model’s ability to prioritize views. Our experiments show that the contrastive learning component enhances the baseline model, improving on the current state of the art by a large margin on several datasets.
Is part of
Trosten, D.J. (2023). Improving Representation Learning for Deep Clustering and Few-shot Learning. (Doctoral thesis). https://hdl.handle.net/10037/29847.
Publisher
IEEE
Citation
Trosten DJ, Løkse S, Jenssen R, Kampffmeyer MC. Reconsidering Representation Alignment for Multi-View Clustering. Computer Vision and Pattern Recognition. 2021
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (fysikk og teknologi) [1057]
Copyright 2021 The Author(s)

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)