ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for teknologi og sikkerhet
  • Artikler, rapporter og annet (teknologi og sikkerhet)
  • Vis innførsel
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for teknologi og sikkerhet
  • Artikler, rapporter og annet (teknologi og sikkerhet)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Exploiting more robust and efficacious deep learning techniques for modeling wind power with speed

Permanent lenke
https://hdl.handle.net/10037/24483
DOI
https://doi.org/10.1016/j.egyr.2021.11.151
Thumbnail
Åpne
article.pdf (678.5Kb)
Publisert versjon (PDF)
Dato
2021-11-27
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Forfatter
Chen, Hao; Staupe-Delgado, Reidar
Sammendrag
Abstract Sound analyses of the nonlinear relationship between wind speed and power generation are crucial for the advancement of wind energy optimization. As an emerging artificial intelligence technology, deep learning has received growing attention from energy researchers for its outstanding ability to provide complex mappings. However, deep neural networks involve complex configurations, making it challenging to utilize them in practice. This paper assesses and presents a number of model-control techniques, categorized as model-oriented and data-oriented, to achieve more robust and efficacious deep neural networks for applications in the nonlinear modeling of wind power with wind speed. These carefully refined models are also compared with polynomials, simple neural networks, and not optimized deep networks with annual data of an Arctic wind farm. The results show that deep networks with sufficient parameter tunings, training optimizations, and modeling exhibit superior performance and generalization, thus possessing considerable advantages in wind energy engineering.
Forlag
Elsevier
Sitering
Chen H, Staupe-Delgado R. Exploiting more robust and efficacious deep learning techniques for modeling wind power with speed. Energy Reports. 2022
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (teknologi og sikkerhet) [361]
Copyright 2021 The Author(s)

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring