ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for ingeniørvitenskap og teknologi
  • Institutt for industriell teknologi
  • Artikler, rapporter og annet (industriell teknologi)
  • Vis innførsel
  •   Hjem
  • Fakultet for ingeniørvitenskap og teknologi
  • Institutt for industriell teknologi
  • Artikler, rapporter og annet (industriell teknologi)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Adjusted Iterated Greedy for the optimization of additive manufacturing scheduling problems

Permanent lenke
https://hdl.handle.net/10037/24523
DOI
https://doi.org/10.1016/j.eswa.2022.116908
Thumbnail
Åpne
article.pdf (1.848Mb)
Publisert versjon (PDF)
Dato
2022-03-19
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Forfatter
Kuo-Ching, Ying; Fabio, Fruggiero; Pourhejazy, Pourya; Bo-Yun, Lee
Sammendrag
As a disruptive technology, additive manufacturing (AM) is revolutionizing manufacturing supply chains. AM consists of producing 3-dimensional objects through layer-by-layer addition of compound material based on digital models. The scheduling of additive manufacturing operations differs from traditional (i.e., subtractive and injection molding) manufacturing with a single production run involving several parts/geometries;::; this makes the jobs heterogeneous. Limited studies have investigated the Additive Manufacturing Scheduling Problems (AMSP). This study extends the Iterated Greedy algorithm to solve the AMSPs considering a single-machine production setting. For this purpose, several computational mechanisms are customized to account for AMspecific characteristics of production scheduling. Numerical analysis shows that the vast majority of the bestfound solutions are yielded by the Adjusted Iterated Greedy (AIG) algorithm considering both solution quality and stability; the outperformance becomes more significant with an increase in problem size. Statistical analysis confirms that AIG’s performance is notably better than that of the existing solution algorithm in terms of solution quality and stability. This study is concluded by providing directions for future development of AM and AMSPs to extend the industrial reach of 3D printing technology.
Forlag
Elsevier
Sitering
Kuo-Ching, Fabio, Pourhejazy P, Bo-Yun. Adjusted Iterated Greedy for the optimization of additive manufacturing scheduling problems. Expert Systems With Applications. 2022;198
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (industriell teknologi) [195]
Copyright 2022 The Author(s)

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring