ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • View Item
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Clinically relevant features for predicting the severity of surgical site infections

Permanent link
https://hdl.handle.net/10037/24569
DOI
https://doi.org/10.1109/JBHI.2021.3121038
Thumbnail
View/Open
article.pdf (783.5Kb)
(PDF)
Date
2021
Type
Journal article
Tidsskriftartikkel

Author
Boubekki, Ahcene; Myhre, Jonas Nordhaug; Luppino, Luigi Tommaso; Mikalsen, Karl Øyvind; Revhaug, Arthur; Jenssen, Robert
Abstract
Surgical site infections are hospital-acquired infections resulting in severe risk for patients and significantly increased costs for healthcare providers. In this work, we show how to leverage irregularly sampled preoperative blood tests to predict, on the day of surgery, a future surgical site infection and its severity. Our dataset is extracted from the electronic health records of patients who underwent gastrointestinal surgery and developed either deep, shallow or no infection. We represent the patients using the concentrations of fourteen common blood components collected over the four weeks preceding the surgery partitioned into six time windows. A gradient boosting based classifier trained on our new set of features reports, respectively, an AUROC of 0:991 and 0:937 at predicting a postoperative infection and the severity thereof. Further analyses support the clinical relevance of our approach as the most important features describe the nutritional status and the liver function over the two weeks prior to surgery.
Description
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Citation
Boubekki A, Myhre JN, Luppino LT, Mikalsen KØ, Revhaug A, Jenssen R. Clinically relevant features for predicting the severity of surgical site infections. IEEE journal of biomedical and health informatics. 2021
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (fysikk og teknologi) [1057]
Copyright 2021 The Author(s)

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)