ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for teknologi og sikkerhet
  • Artikler, rapporter og annet (teknologi og sikkerhet)
  • View Item
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for teknologi og sikkerhet
  • Artikler, rapporter og annet (teknologi og sikkerhet)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Noise-intensification data augmented machine learning for day-ahead wind power forecast

Permanent link
https://hdl.handle.net/10037/25449
DOI
https://doi.org/10.1016/j.egyr.2022.05.265
Thumbnail
View/Open
article.pdf (725.7Kb)
Published version (PDF)
Date
2022-06-10
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Chen, Hao; Birkelund, Yngve; Batalden, Bjørn-Morten; Barabadi, Abbas
Abstract
The day-ahead wind power forecast is essential for the designation of dispatch schedules for the grid and rational arrangement for production planning by power generation companies. This paper specifically investigates the effect of adding noise to the original wind data for forecasting models. Linear regression, artificial neural networks, and adaptive boosting predictive models based on data-intensification white noise and uniform noise are evaluated in detail and their superiority over the original data-based models is compared. The results demonstrate that solely injecting noise into the dataset can statistically boost the performance of all forecasting models with learning algorithms. The findings of this study suggest a fresh perspective for developing wind power prediction models and carry certain wind energy engineering merits.
Publisher
Elsevier
Citation
Chen, Birkelund, Batalden, Barabadi. Noise-intensification data augmented machine learning for day-ahead wind power forecast. Energy Reports. 2022
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (teknologi og sikkerhet) [361]
Copyright 2022 The Author(s)

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)