ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • View Item
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Segmentation of PMSE data using random forests

Permanent link
https://hdl.handle.net/10037/25561
DOI
https://doi.org/10.3390/rs14132976
Thumbnail
View/Open
article.pdf (4.640Mb)
Published version (PDF)
Date
2022-06-22
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Jozwicki, Dorota; Sharma, Puneet; Mann, Ingrid; Hoppe, Ulf-Peter Jürgen
Abstract
EISCAT VHF radar data are used for observing, monitoring, and understanding Earth’s upper atmosphere. This paper presents an approach to segment Polar Mesospheric Summer Echoes (PMSE) from datasets obtained from EISCAT VHF radar data. The data consist of 30 observations days, corresponding to 56,250 data samples. We manually labeled the data into three different categories: PMSE, Ionospheric background, and Background noise. For segmentation, we employed random forests on a set of simple features. These features include: altitude derivative, time derivative, mean, median, standard deviation, minimum, and maximum values corresponding to neighborhood sizes ranging from 3 by 3 to 11 by 11 pixels. Next, in order to reduce the model bias and variance, we employed a method that decreases the weight applied to pixel labels with large uncertainty. Our results indicate that, first, it is possible to segment PMSE from the data using random forests. Second, the weighted-down labels technique improves the performance of the random forests method.
Is part of
Jozwicki, D.S. (2025). Investigation of Multilayers in Polar Mesospheric Summer Echoes. (Doctoral thesis). https://hdl.handle.net/10037/36423.
Publisher
MDPI
Citation
Jozwicki, D.; Sharma, P.; Mann, I.; Hoppe U.-P. Segmentation of PMSE Data Using Random Forests. Remote Sens. 2022, 14, 2976
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (fysikk og teknologi) [1057]
Copyright 2022 The Author(s)

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)