ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for ingeniørvitenskap og teknologi
  • Institutt for industriell teknologi
  • Artikler, rapporter og annet (industriell teknologi)
  • Vis innførsel
  •   Hjem
  • Fakultet for ingeniørvitenskap og teknologi
  • Institutt for industriell teknologi
  • Artikler, rapporter og annet (industriell teknologi)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Using Deep Learning to Predict the Amount of Chemicals Applied on the Wheel Track for Winter Road Maintenance

Permanent lenke
https://hdl.handle.net/10037/26243
DOI
https://doi.org/10.3390/app12073508
Thumbnail
Åpne
article.pdf (5.478Mb)
Publisert versjon (PDF)
Dato
2022-03-30
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Forfatter
Hatamzad, Mahshid; Polanco Pinerez, Geanette Cleotilde; Casselgren, Johan
Sammendrag
The decade of big data has emerged in recent years, which has led to entering the era of intelligent transportation. One of the main challenges to deploying intelligent transportation is dealing with winter roads in cold climate countries. Different operations can be used to protect the road from ice and snow, such as spreading chemicals (here salt) on the road surface. Using salt for de-icing and anti-icing increases road safety. However, the excess use of salt must be avoided since it is not cost-efficient and has negative impacts on the environment. Therefore, the accurate and timely prediction of salt quantity for winter road maintenance helps decision support systems to achieve effective and efficient winter road maintenance. Thus, this paper performs exploratory data analysis to determine the relationships among variables to find the best prediction model for this problem. Due to the stochastic nature of variables regarding weather and roads, a deep neural network/deep learning is selected to predict the amount of salt on the wheel track, using historical data measured by sensors and road weather stations. The results show that the proposed model performs perfectly to learn and predict the amount of salt on the wheel track, based on different metrics, including the loss function, scatter plot, mean absolute error, and explained variance.
Forlag
MDPI
Sitering
Hatamzad, Polanco Pinerez, Casselgren. Using Deep Learning to Predict the Amount of Chemicals Applied on the Wheel Track for Winter Road Maintenance. Applied Sciences. 2022;12(7)
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (industriell teknologi) [195]
Copyright 2022 The Author(s)

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring