ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • Vis innførsel
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Machine Learning Detection of Dust Impact Signals Observed by The Solar Orbiter

Permanent lenke
https://hdl.handle.net/10037/26412
DOI
https://doi.org/10.5194/angeo-41-69-2023
Thumbnail
Åpne
article.pdf (6.323Mb)
Publisert versjon (PDF)
Dato
2022-08-11
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Forfatter
Kvammen, Andreas; Wickstrøm, Kristoffer; Kociscak, Samuel; Vaverka, Jakub; Nouzak, Libor; Zaslavsky, Arnaud; Rackovic Babic, Kristina; Gjelsvik, Amalie; Pisa, David; Souček, Jan; Mann, Ingrid
Sammendrag
This article present results from automatic detection of dust impact signals observed by the Solar Orbiter – Radio and Plasma Waves instrument.

A sharp and characteristic electric field signal is observed by the Radio and Plasma Waves instrument when a dust particle impact the spacecraft at high velocity. In this way, ∼5–20 dust impacts are daily detected as the Solar Orbiter travels through the interstellar medium. The dust distribution in the inner solar system is largely uncharted and statistical studies of the detected dust impacts will enhance our understanding of the role of dust in the solar system.

It is however challenging to automatically detect and separate dust signals from the plural of other signal shapes for two main reasons. Firstly, since the spacecraft charging causes variable shapes of the impact signals and secondly because electromagnetic waves (such as solitary waves) may induce resembling electric field signals.

In this article, we propose a novel machine learning-based framework for detection of dust impacts. We consider two different supervised machine learning approaches: the support vector machine classifier and the convolutional neural network classifier. Furthermore, we compare the performance of the machine learning classifiers to the currently used on-board classification algorithm and analyze one and a half year of Radio and Plasma Waves instrument data.

Overall, we conclude that classification of dust impact signals is a suitable task for supervised machine learning techniques. In particular, the convolutional neural network achieves a 96 % ± 1 % overall classification accuracy and 94 % ± 2 % dust detection precision, a significant improvement to the currently used on-board classifier with 85 % overall classification accuracy and 75 % dust detection precision. In addition, both the support vector machine and the convolutional neural network detects more dust particles (on average) than the on-board classification algorithm, with 14 % ± 1 % and 16 % ± 7 % detection enhancement respectively.

The proposed convolutional neural network classifier (or similar tools) should therefore be considered for post-processing of the electric field signals observed by the Solar Orbiter.

Er en del av
Kočiščák, S. (2024). Understanding Inner Solar System Dust Environment Through In-Situ Measurements. (Doctoral thesis). https://hdl.handle.net/10037/34747
Forlag
Copernicus Publications
Sitering
Kvammen A, Wickstrøm KK, Kociscak S, Vaverka J, Nouzak L, Zaslavsky A, Rackovic Babic, Gjelsvik A, Pisa, Souček J, Mann IB. Machine Learning Detection of Dust Impact Signals Observed by The Solar Orbiter. Annales Geophysicae. 2022
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (fysikk og teknologi) [1058]
Copyright 2022 The Author(s)

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring