Vis enkel innførsel

dc.contributor.authorKessy, Johnson Allen
dc.contributor.authorThe, Dennis
dc.date.accessioned2022-09-01T10:52:48Z
dc.date.available2022-09-01T10:52:48Z
dc.date.issued2022-07-04
dc.description.abstractThe maximal contact symmetry dimensions for scalar ODEs of order ≥ 4 and vector ODEs of order ≥ 3 are well known. Using a Cartan-geometric approach, we determine for these ODEs the next largest realizable (submaximal) symmetry dimension. Moreover, finer curvature-constrained submaximal symmetry dimensions are also classified.en_US
dc.identifier.citationKessy, The. Symmetry gaps for higher order ordinary differential equations. Journal of Mathematical Analysis and Applications. 2022en_US
dc.identifier.cristinIDFRIDAID 2037885
dc.identifier.doi10.1016/j.jmaa.2022.126475
dc.identifier.issn0022-247X
dc.identifier.issn1096-0813
dc.identifier.urihttps://hdl.handle.net/10037/26524
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.relation.ispartofKessy, J.A. (2023). Cartan-Geometric Approaches to Submaximally Symmetric Ordinary Differential Equations. (Doctoral thesis). <a href=https://hdl.handle.net/10037/28883>https://hdl.handle.net/10037/28883</a>.
dc.relation.journalJournal of Mathematical Analysis and Applications
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2022 The Author(s)en_US
dc.titleSymmetry gaps for higher order ordinary differential equationsen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel