dc.contributor.author | Kessy, Johnson Allen | |
dc.contributor.author | The, Dennis | |
dc.date.accessioned | 2022-09-01T10:52:48Z | |
dc.date.available | 2022-09-01T10:52:48Z | |
dc.date.issued | 2022-07-04 | |
dc.description.abstract | The maximal contact symmetry dimensions for scalar ODEs of order ≥ 4 and
vector ODEs of order ≥ 3 are well known. Using a Cartan-geometric approach,
we determine for these ODEs the next largest realizable (submaximal) symmetry
dimension. Moreover, finer curvature-constrained submaximal symmetry dimensions
are also classified. | en_US |
dc.identifier.citation | Kessy, The. Symmetry gaps for higher order ordinary differential equations. Journal of Mathematical Analysis and Applications. 2022 | en_US |
dc.identifier.cristinID | FRIDAID 2037885 | |
dc.identifier.doi | 10.1016/j.jmaa.2022.126475 | |
dc.identifier.issn | 0022-247X | |
dc.identifier.issn | 1096-0813 | |
dc.identifier.uri | https://hdl.handle.net/10037/26524 | |
dc.language.iso | eng | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.ispartof | Kessy, J.A. (2023). Cartan-Geometric Approaches to Submaximally Symmetric Ordinary Differential Equations. (Doctoral thesis). <a href=https://hdl.handle.net/10037/28883>https://hdl.handle.net/10037/28883</a>. | |
dc.relation.journal | Journal of Mathematical Analysis and Applications | |
dc.rights.accessRights | openAccess | en_US |
dc.rights.holder | Copyright 2022 The Author(s) | en_US |
dc.title | Symmetry gaps for higher order ordinary differential equations | en_US |
dc.type.version | publishedVersion | en_US |
dc.type | Journal article | en_US |
dc.type | Tidsskriftartikkel | en_US |
dc.type | Peer reviewed | en_US |