ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for matematikk og statistikk
  • Artikler, rapporter og annet (matematikk og statistikk)
  • Vis innførsel
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for matematikk og statistikk
  • Artikler, rapporter og annet (matematikk og statistikk)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Recognition of polar lows in Sentinel-1 SAR images with deep learning

Permanent lenke
https://hdl.handle.net/10037/27275
DOI
https://doi.org/10.1109/tgrs.2022.3204886
Thumbnail
Åpne
article.pdf (13.29Mb)
Innsendt manusversjon (PDF)
Dato
2022-09-06
Type
Journal article
Tidsskriftartikkel

Forfatter
Grahn, Jakob; Bianchi, Filippo Maria
Sammendrag
In this article, we explore the possibility of detecting polar lows in C-band synthetic aperture radar (SAR) images by means of deep learning. Specifically, we introduce a novel dataset consisting of Sentinel-1 images divided into two classes, representing the presence and absence of a maritime mesocyclone, respectively. The dataset is constructed using the ECMWF reanalysis version 5 (ERA5) dataset as baseline and it consists of 2004 annotated images. To our knowledge, this is the first dataset of its kind to be publicly released. The dataset is used to train a deep learning model to classify the labeled images. Evaluated on an independent test set, the model yields an F1 score of 0.95, indicating that polar lows can be consistently detected from SAR images. Interpretability techniques applied to the deep learning model reveal that atmospheric fronts and cyclonic eyes are key features in the classification. Moreover, experimental results show that the model is accurate even if: 1) such features are significantly cropped due to the limited swath width of the SAR; 2) the features are partly covered by sea ice; and 3) land is covering significant parts of the images. By evaluating the model performance on multiple input image resolutions (pixel sizes of 500 m, 1 km, and 2 km), it is found that higher resolution yield the best performance. This emphasizes the potential of using high-resolution sensors like SAR for detecting polar lows, as compared to conventionally used sensors such as scatterometers.
Forlag
IEEE
Sitering
Grahn, Bianchi. Recognition of polar lows in Sentinel-1 SAR images with deep learning. IEEE Transactions on Geoscience and Remote Sensing. 2022
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (matematikk og statistikk) [354]
Copyright 2022 The Author(s)

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring