Vis enkel innførsel

dc.contributor.authorBjörk, Sara Maria
dc.contributor.authorAnfinsen, Stian Normann
dc.contributor.authorNæsset, Erik
dc.contributor.authorGobakken, Terje
dc.contributor.authorZahabu, Eliakimu
dc.date.accessioned2022-11-09T12:32:34Z
dc.date.available2022-11-09T12:32:34Z
dc.date.issued2022-06-03
dc.description.abstractThis study derives regression models for aboveground biomass (AGB) estimation in miombo woodlands of Tanzania that utilize the high availability and low cost of Sentinel-1 data. The limited forest canopy penetration of C-band SAR sensors along with the sparseness of available ground truth restricts their usefulness in traditional AGB regression models. Therefore, we propose to use AGB predictions based on airborne laser scanning (ALS) data as a surrogate response variable for SAR data. This dramatically increases the available training data and opens for flexible regression models that capture fine-scale AGB dynamics. This becomes a sequential modeling approach, where the first regression stage has linked in situ data to ALS data and produced the AGB prediction map; we perform the subsequent stage, where this map is related to Sentinel-1 data.We develop a traditional, parametric regression model and alternative nonparametric models for this stage. The latter uses a conditional generative adversarial network (cGAN) to translate Sentinel-1 images into ALS-based AGB prediction maps. The convolution filters in the neural networks make them contextual. We compare the sequential models to traditional, nonsequential regression models, all trained on limited AGB ground reference data. Results show that our newly proposed nonsequential Sentinel-1-based regression model performs better quantitatively than the sequential models, but achieves less sensitivity to fine-scale AGB dynamics. The contextual cGAN-based sequential models best reproduce the distribution of ALS-based AGB predictions. They also reach a lower RMSE against in situ AGB data than the parametric sequential model, indicating a potential for further development.en_US
dc.identifier.citationBjörk S, Anfinsen SN, Næsset E, Gobakken T, Zahabu E. On the Potential of Sequential and Nonsequential Regression Models for Sentinel-1-Based Biomass Prediction in Tanzanian Miombo Forests. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2022;15:4612-4639en_US
dc.identifier.cristinIDFRIDAID 2043271
dc.identifier.doi10.1109/JSTARS.2022.3179819
dc.identifier.issn1939-1404
dc.identifier.issn2151-1535
dc.identifier.urihttps://hdl.handle.net/10037/27314
dc.language.isoengen_US
dc.publisherInstitute of Electrical and Electronics Engineers [Society Publisher]en_US
dc.relation.ispartofBjörk, S.M. (2023). Deep convolutional regression modelling for forest parameter retrieval. (Doctoral thesis). <a href=https://hdl.handle.net/10037/31141>https://hdl.handle.net/10037/31141</a>.
dc.relation.journalIEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2022 The Author(s)en_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0en_US
dc.rightsAttribution 4.0 International (CC BY 4.0)en_US
dc.titleOn the Potential of Sequential and Nonsequential Regression Models for Sentinel-1-Based Biomass Prediction in Tanzanian Miombo Forestsen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution 4.0 International (CC BY 4.0)
Med mindre det står noe annet, er denne innførselens lisens beskrevet som Attribution 4.0 International (CC BY 4.0)