Vis enkel innførsel

dc.contributor.authorShvetsov, Nikita
dc.contributor.authorGrønnesby, Morten
dc.contributor.authorPedersen, Edvard
dc.contributor.authorMøllersen, Kajsa
dc.contributor.authorRasmussen Busund, Lill-Tove
dc.contributor.authorSchwienbacher, Ruth
dc.contributor.authorBongo, Lars Ailo
dc.contributor.authorKilvær, Thomas Karsten
dc.date.accessioned2022-11-15T08:55:12Z
dc.date.available2022-11-15T08:55:12Z
dc.date.issued2022-06-16
dc.description.abstractIncreased levels of tumor-infiltrating lymphocytes (TILs) indicate favorable outcomes in many types of cancer. The manual quantification of immune cells is inaccurate and time-consuming for pathologists. Our aim is to leverage a computational solution to automatically quantify TILs in standard diagnostic hematoxylin and eosin-stained sections (H&E slides) from lung cancer patients. Our approach is to transfer an open-source machine learning method for the segmentation and classification of nuclei in H&E slides trained on public data to TIL quantification without manual labeling of the data. Our results show that the resulting TIL quantification correlates to the patient prognosis and compares favorably to the current state-of-the-art method for immune cell detection in non-small cell lung cancer (current standard CD8 cells in DAB-stained TMAs HR 0.34, 95% CI 0.17–0.68 vs. TILs in HE WSIs: HoVer-Net PanNuke Aug Model HR 0.30, 95% CI 0.15–0.60 and HoVer-Net MoNuSAC Aug model HR 0.27, 95% CI 0.14–0.53). Our approach bridges the gap between machine learning research, translational clinical research and clinical implementation. However, further validation is warranted before implementation in a clinical setting.en_US
dc.identifier.citationShvetsov, Grønnesby, Pedersen, Møllersen, Rasmussen Busund, Schwienbacher, Bongo, Kilvær. A Pragmatic Machine Learning Approach to Quantify Tumor-Infiltrating Lymphocytes in Whole Slide Images. Cancers. 2022;14(12)en_US
dc.identifier.cristinIDFRIDAID 2052302
dc.identifier.doi10.3390/cancers14122974
dc.identifier.issn2072-6694
dc.identifier.urihttps://hdl.handle.net/10037/27371
dc.language.isoengen_US
dc.publisherMDPIen_US
dc.relation.journalCancers
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2022 The Author(s)en_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0en_US
dc.rightsAttribution 4.0 International (CC BY 4.0)en_US
dc.titleA Pragmatic Machine Learning Approach to Quantify Tumor-Infiltrating Lymphocytes in Whole Slide Imagesen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution 4.0 International (CC BY 4.0)
Med mindre det står noe annet, er denne innførselens lisens beskrevet som Attribution 4.0 International (CC BY 4.0)