Vis enkel innførsel

dc.contributor.authorHafeez, Sidrah
dc.contributor.authorWong, Man Sing
dc.contributor.authorAbbas, Sawaid
dc.contributor.authorAsim, Muhammad
dc.date.accessioned2022-11-17T08:51:17Z
dc.date.available2022-11-17T08:51:17Z
dc.date.issued2022-06-30
dc.description.abstractThe synergy of fine-to-moderate-resolutin (i.e., 10–60 m) satellite data of the Landsat-8 Operational Land Imager (OLI) and the Sentinel-2 Multispectral Instrument (MSI) provides a possibility to monitor the dynamics of sensitive aquatic systems. However, it is imperative to assess the spectral consistency of both sensors before developing new algorithms for their combined use. This study evaluates spectral consistency between OLI and MSI-A/B, mainly in terms of the topof-atmosphere reflectance (ρt), Rayleigh-corrected reflectance (ρrc), and remote-sensing reflectance (Rrs). To check the spectral consistency under various atmospheric and aquatic conditions, nearsimultaneous same-day overpass images of OLI and MSI-A/B were selected over diverse coastal and inland areas across Mainland China and Hong Kong. The results showed that spectral data obtained from OLI and MSI-A/B were consistent. The difference in the mean absolute percentage error (MAPE) of the OLI and MSI-A products was ~8% in ρt and ~10% in both ρrc and Rrs for all the matching bands, whereas the MAPE for OLI and MSI-B was ~3.7% in ρt , ~5.7% in ρrc, and ~7.5% in Rrs for all visible bands except the ultra-blue band. Overall, the green band was the most consistent, with the lowest MAPE of ≤ 4.6% in all the products. The linear regression model suggested that product difference decreased significantly after band adjustment with the highest reduction rate in Rrs (NIR band) and Rrs (red band) for the OLI–MSI-A and OLI–MSI-B comparison, respectively. Further, this study discussed the combined use of OLI and MSI-A/B data for (i) time series of the total suspended solid concentrations (TSS) over coastal and inland waters; (ii) floating algae area comparison; and (iii) tracking changes in coastal floating algae (FA). Time series analysis of the TSS showed that seasonal variation was well-captured by the combined use of sensors. The analysis of the floating algae bloom area revealed that the algae area was consistent, however, the difference increases as the time difference between the same-day overpasses increases. Furthermore, tracking changes in coastal FA over two months showed that thin algal slicks (width < 500 m) can be detected with an adequate spatial resolution of the OLI and the MSI.en_US
dc.identifier.citationHafeez, Wong, Abbas, Asim. Evaluating Landsat-8 and Sentinel-2 Data Consistency for High Spatiotemporal Inland and Coastal Water Quality Monitoring. Remote Sensing. 2022;14(13)en_US
dc.identifier.cristinIDFRIDAID 2058161
dc.identifier.doi10.3390/rs14133155
dc.identifier.issn2072-4292
dc.identifier.urihttps://hdl.handle.net/10037/27394
dc.language.isoengen_US
dc.publisherMDPIen_US
dc.relation.journalRemote Sensing
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2022 The Author(s)en_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0en_US
dc.rightsAttribution 4.0 International (CC BY 4.0)en_US
dc.titleEvaluating Landsat-8 and Sentinel-2 Data Consistency for High Spatiotemporal Inland and Coastal Water Quality Monitoringen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution 4.0 International (CC BY 4.0)
Med mindre det står noe annet, er denne innførselens lisens beskrevet som Attribution 4.0 International (CC BY 4.0)