Vis enkel innførsel

dc.contributor.authorJha, Debesh
dc.contributor.authorRiegler, Michael
dc.contributor.authorJohansen, Håvard D.
dc.contributor.authorJohansen, Dag
dc.contributor.authorRittscher, Jens
dc.contributor.authorHalvorsen, Pål
dc.contributor.authorAli, Sharib
dc.date.accessioned2022-12-01T14:28:01Z
dc.date.available2022-12-01T14:28:01Z
dc.date.issued2022-03-25
dc.description.abstractThe increase of available large clinical and experimental datasets has contributed to a substantial amount of important contributions in the area of biomedical image analysis. Image segmentation, which is crucial for any quantitative analysis, has especially attracted attention. Recent hardware advancement has led to the success of deep learning approaches. However, although deep learning models are being trained on large datasets, existing methods do not use the information from different learning epochs effectively. In this work, we leverage the information of each training epoch to prune the prediction maps of the subsequent epochs. We propose a novel architecture called feedback attention network (FANet) that unifies the previous epoch mask with the feature map of the current training epoch. The previous epoch mask is then used to provide hard attention to the learned feature maps at different convolutional layers. The network also allows rectifying the predictions in an iterative fashion during the test time. We show that our proposed feedback attention model provides a substantial improvement on most segmentation metrics tested on seven publicly available biomedical imaging datasets demonstrating the effectiveness of FANet. The source code is available at https://github.com/nikhilroxtomar/FANet.en_US
dc.identifier.citationJha D, Riegler M, Johansen, Johansen D, Rittscher J, Halvorsen P, Ali S. FANet: A Feedback Attention Network for Improved Biomedical Image Segmentation. IEEE Transactions on Neural Networks and Learning Systems. 2022en_US
dc.identifier.cristinIDFRIDAID 2014755
dc.identifier.doi10.1109/TNNLS.2022.3159394
dc.identifier.issn2162-237X
dc.identifier.issn2162-2388
dc.identifier.urihttps://hdl.handle.net/10037/27655
dc.language.isoengen_US
dc.publisherIEEEen_US
dc.relation.journalIEEE Transactions on Neural Networks and Learning Systems
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2022 The Author(s)en_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0en_US
dc.rightsAttribution 4.0 International (CC BY 4.0)en_US
dc.titleFANet: A Feedback Attention Network for Improved Biomedical Image Segmentationen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution 4.0 International (CC BY 4.0)
Med mindre det står noe annet, er denne innførselens lisens beskrevet som Attribution 4.0 International (CC BY 4.0)