ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for matematikk og statistikk
  • Artikler, rapporter og annet (matematikk og statistikk)
  • Vis innførsel
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for matematikk og statistikk
  • Artikler, rapporter og annet (matematikk og statistikk)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Power Flow Balancing With Decentralized Graph Neural Networks

Permanent lenke
https://hdl.handle.net/10037/27777
DOI
https://doi.org/10.1109/TPWRS.2022.3195301
Thumbnail
Åpne
article.pdf (1.647Mb)
Akseptert manusversjon (PDF)
Dato
2022-08-01
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Forfatter
Hansen, Jonas Berg; Anfinsen, Stian Normann; Bianchi, Filippo Maria
Sammendrag
We propose an end-to-end framework based on a Graph Neural Network (GNN) to balance the power flows in energy grids. The balancing is framed as a supervised vertex regression task, where the GNN is trained to predict the current and power injections at each grid branch that yield a power flow balance. By representing the power grid as a line graph with branches as vertices, we can train a GNN that is accurate and robust to changes in topology. In addition, by using specialized GNN layers, we are able to build a very deep architecture that accounts for large neighborhoods on the graph, while implementing only localized operations. We perform three different experiments to evaluate: i) the benefits of using localized rather than global operations and the tendency of deep GNN models to oversmooth the quantities on the nodes; ii) the resilience to perturbations in the graph topology; and iii) the capability to train the model simultaneously on multiple grid topologies and the consequential improvement in generalization to new, unseen grids. The proposed framework is efficient and, compared to other solvers based on deep learning, is robust to perturbations not only to the physical quantities on the grid components, but also to the topology.
Forlag
IEEE
Sitering
Hansen, Anfinsen, Bianchi. Power Flow Balancing With Decentralized Graph Neural Networks. IEEE Transactions on Power Systems. 2022
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (matematikk og statistikk) [354]
Copyright 2022 The Author(s)

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring