ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for ingeniørvitenskap og teknologi
  • Institutt for datateknologi og beregningsorienterte ingeniørfag
  • Artikler, rapporter og annet (datateknologi og beregningsorienterte ingeniørfag)
  • Vis innførsel
  •   Hjem
  • Fakultet for ingeniørvitenskap og teknologi
  • Institutt for datateknologi og beregningsorienterte ingeniørfag
  • Artikler, rapporter og annet (datateknologi og beregningsorienterte ingeniørfag)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Large deviations for Markov jump processes in periodic and locally periodic environments

Permanent lenke
https://hdl.handle.net/10037/28089
DOI
https://doi.org/10.1214/22-AAP1797
Thumbnail
Åpne
article.pdf (320.4Kb)
Publisert versjon (PDF)
Dato
2022-12
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Forfatter
Piatnitski, Andrei; Pirogov, Sergei; Zhizhina, Elena
Sammendrag
The paper deals with a family of jump Markov process defined in a medium with a periodic or locally periodic microstructure. We assume that the generator of the process is a zero order convolution type operator with rapidly oscillating locally periodic coefficient and, under natural ellipticity and localization conditions, show that the family satisfies the large deviation principle in the path space equipped with Skorokhod topology. The corresponding rate function is defined in terms of a family of auxiliary periodic spectral problems. It is shown that the corresponding Lagrangian is a convex function of velocity that has a superlinear growth at infinity. However, neither the Lagrangian nor the corresponding Hamiltonian need not be strictly convex, we only claim their strict convexity in some neighbourhood of infinity. It then depends on the profile of the generator kernel whether the Lagrangian is strictly convex everywhere or not.
Forlag
Institute of Mathematical Statistics
Sitering
Piatnitski, Pirogov, Zhizhina. Large deviations for Markov jump processes in periodic and locally periodic environments. The Annals of Applied Probability. 2022
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (datateknologi og beregningsorienterte ingeniørfag) [171]
© 2022 Institute of Mathematical Statistics

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring