ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for informatikk
  • Artikler, rapporter og annet (informatikk)
  • Vis innførsel
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for informatikk
  • Artikler, rapporter og annet (informatikk)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Using machine learning to provide automatic image annotation for wildlife camera traps in the Arctic

Permanent lenke
https://hdl.handle.net/10037/29129
Thumbnail
Åpne
article.pdf (629.1Kb)
Innsendt manusversjon (PDF)
Dato
2017
Type
Chapter
Bokkapittel

Forfatter
Thom, Håvard; Bjørndalen, John Markus; Kleiven, Eivind Flittie; Soininen, Eeva M; Killengreen, Siw Turid; Ehrich, Dorothee; Ims, Rolf Anker; Anshus, Otto; Horsch, Alexander
Sammendrag
The arctic tundra is considered the terrestrial biome expected to be most impacted by climate change, with temperatures projected to increase as much as 10 °C by the turn of the century. The Climate-ecological Observatory for Arctic Tundra (COAT) project monitors the climate and ecosystems using several sensor types. We report on results from projects that automate image annotations from two of the camera traps used by COAT: an artificial tunnel under the snow for capturing information about small mammals, and an open-air camera trap using bait that captures information of a range of larger sized birds and mammals. These traps currently produce over two million pictures per year.

We have developed and trained several Convolutional Neural Network (CNN) models to automate annotation of images from these camera traps. Results show that we get a high accuracy: 97.84% for tunnel traps, and 94.1% for bait traps. This exceeds previous state of the art in animal identification on camera trap images, and is at a level where we can already relieve experts from manual annotation of images.

Beskrivelse
Source at https://hdl.handle.net/10037/26504.
Forlag
UiT Norges arktiske universitet
Sitering
Thom H, Bjørndalen JM, Kleiven EF, Soininen EM, Killengreen St, Ehrich D, Ims RA, Anshus O, Horsch A: Using machine learning to provide automatic image annotation for wildlife camera traps in the Arctic. In: Melbye H. Proceedings from the 42nd annual conference of the International Lung Sound Association, ILSA 2017, 2017. Institutt for samfunnsmedisin - ISM skriftserie p. 17-20
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (informatikk) [477]

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring