Vis enkel innførsel

dc.contributor.authorAndrade Mancisidor, Rogelio
dc.contributor.authorKampffmeyer, Michael
dc.contributor.authorAas, Kjersti
dc.contributor.authorJenssen, Robert
dc.date.accessioned2023-06-27T07:31:34Z
dc.date.available2023-06-27T07:31:34Z
dc.date.issued2020-05-21
dc.description.abstractCredit scoring models based on accepted applications may be biased and their consequences can have a statistical and economic impact. Reject inference is the process of attempting to infer the creditworthiness status of the rejected applications. Inspired by the promising results of semi-supervised deep generative models, this research develops two novel Bayesian models for reject inference in credit scoring combining Gaussian mixtures and auxiliary variables in a semi-supervised framework with generative models. To the best of our knowledge this is the first study coupling these concepts together. The goal is to improve the classification accuracy in credit scoring models by adding reject applications. Further, our proposed models infer the unknown creditworthiness of the rejected applications by exact enumeration of the two possible outcomes of the loan (default or non-default). The efficient stochastic gradient optimization technique used in deep generative models makes our models suitable for large data sets. Finally, the experiments in this research show that our proposed models perform better than classical and alternative machine learning models for reject inference in credit scoring, and that model performance increases with the amount of data used for model training.en_US
dc.identifier.citationAndrade Mancisidor, Kampffmeyer, Aas, Jenssen. Deep generative models for reject inference in credit scoring. Knowledge-Based Systems. 2020;196en_US
dc.identifier.cristinIDFRIDAID 1819968
dc.identifier.doi10.1016/j.knosys.2020.105758
dc.identifier.issn0950-7051
dc.identifier.issn1872-7409
dc.identifier.urihttps://hdl.handle.net/10037/29503
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.relation.journalKnowledge-Based Systems
dc.relation.projectIDNorges forskningsråd: 260205en_US
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2020 The Author(s)en_US
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0en_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)en_US
dc.titleDeep generative models for reject inference in credit scoringen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
Med mindre det står noe annet, er denne innførselens lisens beskrevet som Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)